Все об электродвижущей силе

Содержание

Индуктивность.Электродвижущая сила самоиндукции

• Электромагнетизм •
  • Магнитное поле тока, магнитная индукция, магнитный поток
  • Электромагнитная сила
  • Взаимодействие парал лельных проводов с токами
  • Магнитная проницаемость
  • Напряженность магнитного поля,магнитное напряжение
  • Закон полного тока
  • Магнитное поле катушки с током
  • Ферромагнетики,их намагничивание и перемагничивание
  • Ферромагнитные материалы
  • Магнитная цепь и ее расчет
  • Электромагниты
  • Электромагнитная индукция
  • Принцип работы электричес кого генератора
  • Принцип работы электродви гателя
  • Вихревые токи
  • Индуктивность.Электродви жущая сила самоиндукции
  • Энергия магнитного поля
  • Взаимная индуктивность
• Обзор сайта •
  • Электрооборудование до 1000 В
  • Электрические аппараты
  • Электрические машины
  • Эксплуатация электро оборудования
  • Электрооборудование электротехнологических установок
  • Электрооборудование общепромышленных установок
  • Электрооборудование подъемно-транспортных установок
  • Электрооборудование металлообрабатывающих станков
  • Электрооборудование выше 1000 В
  • Электрические аппараты высокого напряжения
  • Электротехника
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока
  • Электромонтаж
  • С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
  • Монтаж электропроводки
  • Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
  • Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
  • Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
  • Электромонтаж и заземле ние розеток
  • Электромонтаж уравнива ния потенциалов
  • Электромонтаж контура заземления
  • Электромонтаж модульного штыревого контура заземле ния
  • Электромонтаж нагреватель ного кабеля для подогрева полов
  • Электромонтажные работы по прокладке кабеля в зем ле
  • Электричество в частном доме
  • Проект электроснабжения
• Электротехника •
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

При прохождении тока по цепи каждый контур или виток катушки пронизывается собственным магнитным потоком, который называется потоком самоиндукции ΦL. Сумма потоков самоиндукции всех витков контура или катушки называется потокосцеплением самоиндукции ΦL. При постоянной магнитной проницаемости среды магнитный поток и потокосцепление самоиндукции пропорциональны току. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется индуктивностью:

Индуктивность характеризует связь потокосцепления самоиндукции с током контура. Единицей измерения индуктивности в системе СИ служит генри (Г):

Ом-секунда или генри — крупная единица, поэтому часто пользуются дольными единицами — миллигенри (1 мГ 1 • 10-3 Г) и микрогенри (1 мкГ =1 • 10-6 Г). Условное обозначение участка цепи, обладающего индуктивностью, показано на рис. 3.32.

Определим индуктивность кольцевой катушки. Потокосцепление кольцевой катушки (3-20)

а индуктивность её

Таким образом, индуктивность катушки зависит от размеров катушки, от числа витков и от магнитной проницаемости среды (сердечника):

Всякое изменение тока в цепи (в контуре) сопровождается изменением магнитного потока и потокосцепления самоиндукции, а следовательно, возникновением э. д. с., которая в этом случае называется э. д. с. самоиндукции. Явление возникновения э. д. с. в контуре вследствие изменения тока в этом контуре называется самоиндукцией. Величина э. д. с. самоиндукции определяется по (3-29):

Следовательно,э. д. с. самоиндукции пропорциональна индуктивности и скорости изменения тока в цепи. Направление э. д. с. самоиндукции определяется по закону Ленца. При увеличений тока, т. е. при di/dt > О, э. д. с. eL отрицательна и, следовательно, направлена встречно току; наоборот, при уменьшении тока, т. е. при di/dt < О э. д. с. eL положительна и, следовательно, направлена одинаково с током.

Сторонние электродвижущие силы

Поместим проводник в электростатическое поле. Рассмотрим процессы, которые будут там происходить:

  1. В начальный момент времени при воздействии электрического поля положительные заряды проводника станут двигаться из мест с большим потенциалом в места с меньшим потенциалом. Отрицательные заряды при этом двигаются в противоположном направлении.
  2. Противоположные концы проводника будут накапливать положительные и отрицательные заряды.
  3. В конце концов, поле индуцированных зарядов будет полностью компенсировать в объеме проводника внешнее поле, и ток остановится, система придет в электростатическое равновесие.

Выключим внешнее поле:

  1. Сохранится только поле индуцированных зарядов, появится ток, который связан с их нейтрализацией.
  2. По прошествии некоторого времени и данный ток прекратится.

Вывод: электростатическое поле не способно поддерживать в проводнике неизменный электрический ток. Для создания постоянного тока следует препятствовать установлению в проводнике электростатического равновесия. Что требует выполнения работы против сил электрического поля, которые стремятся уровнять все потенциалы поля всех точек в проводнике.

Готовые работы на аналогичную тему

  • Курсовая работа Физический смысл электродвижущей силы 450 руб.
  • Реферат Физический смысл электродвижущей силы 280 руб.
  • Контрольная работа Физический смысл электродвижущей силы 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Данная работа может быть выполнена исключительно за счет сил, не относящихся к электростатическим. В этой связи, силы, поддерживающие электрический ток постоянным, называют сторонними электродвижущими силами (ЭДС).

Сторонние ЭДС могут обладать любой природой, например: механической; электромагнитной; * химической и т. д.

Определение 1

Приспособления для создания сторонних сил называют источниками ЭДС.

Мерой возможностей источников ЭДС порождать электрический ток является электродвижущая сила ($Ɛ$).

Определение 2

Электродвижущая сила соответствует работе, которую выполняют сторонние силы источника, двигая единичный положительный заряд внутри источника от полюса со знаком минус к положительному полюсу.

$Ɛ=\frac{A_{st}}{q}$.

Направлением ЭДС считают направление перемещения положительных зарядов внутри источника (от отрицательного полюса к положительному).

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

Если в исследуемом контуре источник ЭДС один, то направлением ЭДС можно считать направление течения тока в данном контуре.

История

Примерно в 1830 году Майкл Фарадей установил, что химические реакции на каждой из двух поверхностей раздела электрод-электролит обеспечивают «место действия ЭДС» для гальванического элемента. То есть эти реакции управляют током, а не бесконечным источником энергии, как первоначально предполагалось. В случае разомкнутой цепи разделение зарядов продолжается до тех пор, пока электрическое поле разделенных зарядов не станет достаточным для остановки реакции. Несколькими годами ранее Алессандро Вольта , измеривший контактную разность потенциалов на границе раздела металл-металл (электрод-электрод) своих ячеек, ошибочно полагал, что только контакт (без учета химической реакции) является источником ЭДС. .

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

https://youtube.com/watch?v=RjuB-YlXRWI

https://youtube.com/watch?v=pkt_uw5yZio

4.1. Опыты Фарадея. ЭДС индукции

а б

Рис. 4.1. Схемы опытов Фарадея

В 1831г. Фарадей открыл явление электромагнитной индукции, заключающееся в возникновении тока под действием переменного магнитного поля. Схема опытов Фарадея приведена на рис. 4.1. Он установил, что ток в первой катушке возникает: при движении по­стоянного магнита относительно катушки (рис.4.1а

); при изменении тока во второй катушке (рис.4.1б ); при движении катушек относительно друг друга (во второй при этом существует постоянный ток). Чем быстрее движется магнит или вторая катушка, тем больше сила тока. Отсюда можно было сделать вывод:в замкнутом контуре возникает ток при изменении потока магнитной индукции, пронизывающего контур . Это означает, что в контуре возникает ЭДС индукции:

. (4.1)

ЭДС индукции

равна скорости изменения магнитного потока, пронизывающего контур (точнее, производной от потока по времени). Если в контуре имеетсяN витков с плотной намоткой, то индуцированные в каждом витке ЭДС будут складываться, и формула (4.1) при­нимает вид:

. (4.2)

Рис.4.2. Демонстрация правила Ленца

Знак (-) в правой части формул отражает правило Ленца

:возникающий в замкнутом контуре ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (т. е. противодействует причине, его породившей). На рис. 4.2 показан опыт с внесением магнита в замкнутое кольцо. Возникающий в кольце индукционный ток создает магнитное поле, препятствующее внесению магнита, и отталкивает кольцо от магнита. При внесении магнита в разрезанное кольцо эффект отсутствует.

Посмотрим, что происходило бы, если бы правило Ленца не выполнялось. Индук­ционный ток в этой ситуации создавал бы магнитный поток, направление которого совпадало бы с исходным изменением; возрастающее изменение потока привело бы к еще большему увеличению индукционного тока, что сопровождалось бы еще большим изменением потока. В результате ток продолжал бы нарастать до бесконеч­ности, выделяя мощность (Р=I2R) даже после прекра­щения первоначального изменения. Это означало бы на­рушение закона сохранения энергии. Таким об­разом,правило Ленца является следствием закона сохранения энергии .

Поскольку ЭДС определяется как циркуляция напряженности электрического поля сторонних сил (см. раздел 2.1), возникновение ЭДС индукции можно трактовать как появление вихревого электрического поля, способного перемещать заряды в замкнутой цепи.

Реальный источник ЭДС

Источник электрической энергии – это источник ЭДС с внутренним сопротивлением R вн. Это могут быть какие-либо химические элементы питания, наподобие батареек и аккумуляторов

Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:

Где E
– это ЭДС, а R вн
– это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:

Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:

Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

Особенности внутреннего сопротивления источника тока

У идеального источника тока бесконечное сопротивление, а для подлинных источников можно представить приближенный вариант. Эквивалентная электросхема – это сопротивление, подключенное к источнику параллельно, и внешнее сопротивление.

Токовый выход от источника тока распределяется так: частично ток течет через наиболее высокое внутреннее сопротивление и через низкое сопротивление нагрузки.

Выходной ток будет находиться из суммы токов на внутреннем сопротивлении и нагрузочного Iо = Iн + Iвн.

Получается:

Iн = Iо — Iвн = Iо — Uн/r.

Эта зависимость показывает, что когда внутреннее сопротивление источника тока растет, тем больше снижается ток на нем, а резистор нагрузки получает большую часть тока. Интересно, что напряжение влиять не будет на токовую величину.

Выходное напряжение реального источника:

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

  • Автомобильный свинцово-кислотный аккумулятор напряжением 12 вольт и ёмкостью 55 А·ч
  • Восемь батареек типоразмера АА, соединенных последовательно. Суммарное напряжение такой батареи также 12 вольт, ёмкость значительно меньше — примерно 1 А·ч

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток 250 ампер), а от цепочки батареек стартер вообще не вращается. Относительно небольшая емкость батареек не является причиной: одного ампер-часа в батарейках хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 ампер).

Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем

сопротивлении (или импедансе). Если же двухполюсник не содержит источников, то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что ипросто «сопротивление».

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Будет интересно Что такое электрическое поле: объяснение простыми словам

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

Что такое самоиндукция.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Таблица параметров электродвижущей силы индукции.

Электродвижущая сила (ЭДС) источника энергии

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока). Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи. За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское). ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

Электродвижущая сила (ЭДС) источника энергии.

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

  • 1 киловольт (кВ, kV), равный 1000 В;
  • 1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),
  • 1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

https://youtube.com/watch?v=8GvuGCE9JQI

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов. Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую. У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время.

Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом.

Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом. От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Примеры решения задач

К каждой позиции первого столбца подберите соответствующую позицию второго:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Решение: Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.

ЭДС определяется по формуле:

Сила тока определяется по формуле:

Сопротивление определяется по формуле:

Разность потенциалов определяется по формуле:

Правильный ответ:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Часто задаваемые вопросы

Что такое электродвижущая сила?
Это отношение работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда.

Что такое электрическая цепь?
Набор устройств, которые соединены проводниками, предназначенный для протекания тока.

Как звучит закон Ома для полной цепи?
Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила!
Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА! Можно назвать ее сокращенно ЭДС – Э
лектро Д
вижущая С
ила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E
.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит. Говорят просто – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Что такое напряжение

Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В. Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи. Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.

Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.

Для переменного тока используют следующие понятия:

  • мгновенное напряжение – это разность потенциалов между точками в данный промежуток времени;
  • амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
  • среднее значение – постоянная составляющая напряжения;
  • среднеквадратичное и средневыпрямленное.

Что такое напряжение

Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В. Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи. Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.

Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.

Для переменного тока используют следующие понятия:

  • мгновенное напряжение – это разность потенциалов между точками в данный промежуток времени;
  • амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
  • среднее значение – постоянная составляющая напряжения;
  • среднеквадратичное и средневыпрямленное.

Напряжение участка цепи зависит от материала проводника, сопротивления нагрузки и температуры. Так же как и электродвижущая сила измеряется в Вольтах.

Часто для понимания физического смысла напряжения, его сравнивают с водонапорной башней. Столб воды отождествляют с напряжением, а поток с током.

При этом столб воды в башне постепенно уменьшается, что характеризует понижение напряжения и уменьшения силы тока.

Идеальный источник ЭДС

Идеальный источник ЭДС имеет неизменные ЭДС и напряжение на зажимах при всех токах нагрузки. У реального источника ЭДС и напряжение на зажимах изменяются при изменении нагрузки, например вследствие падения напряжения в обмотках генератора постоянного тока. Поэтому реальные источники ЭДС изображается с помощью двух последовательно включенных элементов – идеального источника ЭДС и сопротивления, которое учитывает внутреннее сопротивление реального источника (рисунок 2.3 а). Свойства реального источника ЭДС отражает вольт-амперная характеристика (ВАХ) или внешняя характеристика – зависимость напряжения между его выводами от тока источника (рисунок 2.3 б). Уравнение внешней характеристики реального источника ЭДС:

Электрическое напряжение и ЭДС

Допустим, у нас имеется электрическое поле. Рассмотрим в нем произвольную кривую (рис.1) $l$, которая соединяет точки $A$ и $B$. Укажем на этой криво положительное направление.

Рисунок 1. Электрическое поле. Автор24 — интернет-биржа студенческих работ

Напряжение по избранной нами кривой равно:

$U=\int\limits_l {\vec{E}d\vec{l}=\int\limits_l {E_{l}dl} \left( 2 \right).} $

Так как напряженность $\vec E$ имеет смысл силы, которая действует на единичный положительный заряд, то интеграл (2) – это работа поля по движению заряда по кривой $l$. Напряжение равно разности потенциалов в начале и конце рассматриваемой кривой:

$U=\varphi_{1}-\varphi_{2}\left( 3 \right)$.

Электрическое напряжение вдоль кривой не зависит от ее формы и полностью определено положением начала и конца линии.

Рассмотрим циркуляцию вектора напряженности по контуру $L$ рис.2.

Рисунок 2. Циркуляция вектора напряженности по контуру. Автор24 — интернет-биржа студенческих работ

Выделим на рассматриваемом контуре две точки $A$ и $B$, которые делят наш контур на два незамкнутых криволинейных отрезка $l_{12}$ и $l_{21}$, учитывая (2) и (3), имеем:

$\oint\limits_L {\vec{E}d\vec{l}=\int\limits_A^B{\vec{E}d\vec{l}+\int\limits_B^A {\vec{E}d\vec{l}=} } } \left( \varphi{1}-\varphi_{2} \right)+\left( \varphi_{2}-\varphi_{1} \right)=0\,\left( 4 \right)$

Мы получили, что циркуляция вектора напряженности по замкнутому контуру равна нулю.

Определение 3

В теории электричества электродвижущей силой контура (ЭДС) называют циркуляцию вектора напряженности по этому контуру.

$Ɛ=\oint\limits_L {\vec{E}d\vec{l}=0\, \left( 5 \right).} $

В электростатическом поле ЭДС любого замкнутого контура равна нулю.

В (электрохимической) термодинамике

Умноженная на величину заряда dQ, ЭДС ℰ дает термодинамический рабочий член ℰ dQ, который используется в формализме для изменения энергии Гиббса при прохождении заряда в батарее:

dгзнак равно-SdТ+Vdп+EdQ ,{\ Displaystyle dG = -SdT + VdP + {\ mathcal {E}} dQ \,}

где G — свободная энергия Гибба, S — энтропия , V — объем системы, P — ее давление, а T — ее абсолютная температура .

Комбинация (ℰ, Q ) является примером пары сопряженных переменных . При постоянном давлении указанное выше соотношение создает соотношение Максвелла, которое связывает изменение напряжения открытого элемента с температурой T (измеряемая величина) с изменением энтропии S, когда заряд проходит изотермически и изобарически . Последнее тесно связано с энтропией электрохимической реакции, которая дает батарее ее мощность. Это соотношение Максвелла:

(∂E∂Т)Qзнак равно-(∂S∂Q)Т{\ displaystyle \ left ({\ frac {\ partial {\ mathcal {E}}} {\ partial T}} \ right) _ {Q} = — \ left ({\ frac {\ partial S} {\ partial Q }} \ right) _ {T}}

Если моль ионов переходит в раствор (например, в ячейке Даниэля, как обсуждается ниже), заряд через внешнюю цепь составляет:

ΔQзнак равно-пF ,{\ displaystyle \ Delta Q = -n_ {0} F_ {0} \,}

где n — количество электронов на ион, F постоянная Фарадея, а знак минус указывает на разрядку ячейки. Предполагая постоянные давление и объем, термодинамические свойства ячейки строго связаны с поведением ее ЭДС:

ΔЧАСзнак равно-пF(E-ТdEdТ) ,{\ displaystyle \ Delta H = -n_ {0} F_ {0} \ left ({\ mathcal {E}} — T {\ frac {d {\ mathcal {E}}} {dT}} \ right) \, }

где Δ H — энтальпия реакции . Все величины справа можно измерить напрямую. Предполагая постоянные температуру и давление:

Δгзнак равно-пFE{\ displaystyle \ Delta G = -n_ {0} F_ {0} {\ mathcal {E}}}

которое используется при выводе уравнения Нернста .

Заключение

Давайте подведем итоги и еще раз кратко напомним, что такое ЭДС и в каких единицах СИ выражается эта величина.

  1. ЭДС характеризует работу сторонних сил (химических или физических) неэлектрического происхождения в электрической цепи. Эта сила выполняет работу по переносу электрических зарядов ней.
  2. ЭДС, как и напряжение измеряется в Вольтах.
  3. Отличия ЭДС от напряжения состоят в том, что первое измеряется без нагрузки, а второе с нагрузкой, при этом учитывается и оказывает влияние внутреннее сопротивление источника питания.

И наконец, для закрепления пройденного материала, советую посмотреть еще одно хорошее видео на эту тему:

https://youtube.com/watch?v=YXD4ThltnQo

Материалы по теме:

  • Чем отличается переменный ток от постоянного
  • Что такое электрический заряд
  • Как понизить постоянное и переменное напряжение

Опубликовано:
20.07.2019
Обновлено: 20.07.2019