Коэффициент полезного действия (кпд) — формулы и расчеты

Определение слова «Джоуль» по БСЭ:

Джоуль — Джоуль (Joule) Джеймс Прескотт (24.12.1818, Солфорд, Ланкашир, — 11.10.1889, Сейл, Чешир), английский физик, член Лондонского королевского общества (1850). Был владельцем пивоваренного завода близ Манчестера. Внёс значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения энергии. Д. установил (1841. опубликовано в 1843), что количество тепла, выделяющееся в металлическом проводнике при прохождении через него электрического тока, пропорционально электрическому сопротивлению проводника и квадрату силы тока (см. Джоуля — Ленца закон). В 1843-50 Д. экспериментально показал, что теплота может быть получена за счёт механической работы, и определил механический эквивалент теплоты, дав тем самым одно из экспериментальных обоснований закона сохранения энергии. В 1851, рассматривая теплоту как движение частиц, теоретически определил теплоёмкость некоторых газов. Совместно с У. Томсоном опытным путём установил, что при медленном стационарном адиабатическом протекании газа через пористую перегородку температура его изменяется (см. Джоуля — Томсона эффект). Обнаружил явление магнитного насыщения при намагничивании ферромагнетиков. Соч.: The scientific papers, v. 1-2, L., 1884-87. в рус. пер. — Некоторые замечания о теплоте и о строении упругих жидкостей, в кн.: Основатели кинетической теории материи, М. — Л., 1937. Лит.: Wood A., Joule and the study of energy, L., 1925. Дж. П. Джоуль.

Джоуль — единица энергии и работы в Международной системе единиц и МКСА системе единиц, равная работе силы 1 н при перемещении ею тела на расстояние 1 м в направлении действия силы. Названа в честь английского физика Дж. Джоуля. Обозначения: русское дж, международное J. Д. был введён на Втором международном конгрессе электриков (1889) в Абсолютные практические электрические единицы в качестве единицы работы и энергии электрического тока. Д. был определён как работа, совершаемая при мощности в 1 вт в течение 1 сек. Международная конференция по электрическим единицам и эталонам (Лондон, 1908) установила «международные» электрические единицы, в том числе так называемый международный Д. После возвращения с 1 января 1948 к абсолютным электрическим единицам было принято соотношение: 1 международный Д. = 1,00020 абсолютный Д. Д. применяется также как единица количества теплоты. Соотношения Д. с др. единицами: 1 дж = 107 эрг = 0,2388 кал. Г. Д. Бурдун.

Постоянные магниты — производители электроэнергии

Магнит имеет свойство притягивать различные вещи из железа и его сплавов. Притянув к себе некий предмет, он не расходует свою энергию, это просто свойство, которым он обладает и которое не может исчерпать. Поэтому на основе магнитов можно было бы сделать двигатель, близкий к вечному

Безусловно, нельзя не принимать во внимание изнашиваемость деталей, но сам принцип работы магнита создает условия для постоянной работы без растраты средств

Правда, некоторые ученые считают, что со временем магнит теряет свои свойства. Это непроверенная информация, но не учитывать такой поворот событий тоже нельзя.

На основе магнитов много раз пытались создать подобие вечного двигателя, но пока эти попытки ни к чему не привели. Конечно, хочется верить, что в обозримом будущем учёные сделают прорыв и изобретут двигатель, который будет работать на возобновляемой энергии.

Коэффициент ПД электродвигателя — это чрезвычайно важный показатель, который обусловливает производительность работы какого-либо движка. Чем его показатель выше, тем эффективнее движок. В моторе с КПД 95% почти вся затрачиваемая мощность расходуется на осуществление работы и всего 5% тратится не на требуемое действие (к примеру, на разогрев частей). Нынешние дизельные двигатели способны добиваться значения КПД 45%. Коэффициент маленький, но тем не менее он считается одним из самых производительных. КПД карбюраторных двигателей, работающих на бензине, еще более низкий.

Закон Джоуля-Ленца

На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.

Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.

Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.

Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:

  • количество теплоты в проводнике снижается при увеличении площади его сечения;

  • тепловой эффект снижается при уменьшении длины проводника.

Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.

Гидравлический КПД

Гидравлический КПД определяется течением жидкости внутри проточной части насоса, а если точнее гидравлическими потерями, которые возникают во время работы насоса. Например, если шероховатость поверхности стенок насоса увеличена, то жидкости станет сложнее преодолеть сопротивление трения, а значит, скорость течения жидкости будет ниже. Многое зависит и от вида течения жидкости. Возникающий в проточной части насоса турбулентный (вихревой) поток жидкости увеличивает гидравлические потери.

Отношение количества жидкости поступившей в насос через всасывающий патрубок, к количеству жидкости вышедшей из него через напорный патрубок является объёмным КПД насосной части. Объёмный КПД ещё называют КПД подачи, так как его можно рассмотреть как отношение производительностей, действительной к теоретической.

Чтобы потребитель имел возможность определить КПД насоса в конкретной рабочей точке, многие производители насосного оборудования прилагают к диаграммам рабочих характеристик насоса диаграммы с графиками характеристик КПД.

График эффективности насоса на примере Argal TMR 10.15

На какие части делится энергия нагревателя

Мы выяснили, что за счет одной части энергии газ совершает работу. Вторая часть полученной от нагревателя энергии передается холодильнику, который затем рассеивает ее в окружающее пространство (рис. 4).

Эта теплота выбрасывается в атмосферу вместе с отработанным паром, или сгоревшими выхлопными газами турбин и двигателей внутреннего сгорания – то есть, теряется безвозвратно. Главное то, что никакой газ не превращает свою внутреннюю энергию в работу полностью. Часть энергии неизбежно будет утеряна.

Рис. 4. Энергия нагревателя частично расходуется на совершение работы, оставшаяся часть теряется в окружающую среду

Посмотрев на рисунок 4, легко составить связь между энергией нагревателя, работой и энергией холодильника.

(large Q_{H} left(text{Дж} right) ) – тепловая энергия, полученная от нагревателя;

(large Q_{X} left(text{Дж} right) ) – тепловая энергия, переданная холодильнику;

(large A left(text{Дж} right) ) – работа, которую совершил расширяющийся газ (пар);

Так как часть энергии теряется, работа всегда будет меньше полученной энергии. Работу и энергию измеряют в джоулях. Работа – это затраченная энергия, то есть, разница между конечной и начальной энергией.

Примечание: Полученная энергия берется со знаком «плюс», а утерянная – со знаком «минус». Нам уже известно, что энергия (Q_{X}), переданная холодильнику и утерянная, будет отрицательной. Запишем ее по модулю, чтобы не учитывать в формуле ее знак.

Коэффициент полезного действия (КПД)

Коэффициент полезного действия… Очень интересное название.

  • «Коэффициент» – значит, какое-то число.
  • «Полезного действия» – значит, есть некоторое действие и оно «полезно» для кого-то; тогда, по-видимому, существует также и «неполезное» действие.

Рассмотрим КПД сначала на бытовом примере. Допустим, вы хотите купить грецких орехов. Так получилось, что вы купили 505050 орехов. Когда вы начали их колоть и есть – оказалось, что 202020 из этих грецких орехов – пустые. «Полезными» (нужными) оказались только 303030 орехов из 505050. Тогда «эффективность» (коэффициент полезного действия) для вашей покупки грецких орехов можно подсчитать как

η=30 орехов50 орехов=35=0,6=60%eta = frac{30 ext{ орехов}}{50 ext{ орехов}} = frac{3}{5} = 0,6 = 60 \%η=50 орехов30 орехов​=53​=0,6=60%.

Аналогично «устроен» КПД в механике. КПД фактически показывает долю полезной работы от общей совершенной работы:

Например, вы равномерно затаскиваете груз по наклонной плоскости. Тащите равномерно. Тогда работа вашей силы «тратится» на увеличение потенциальной энергии и на противодействие работе силы трения:

A=∣Fтр.⋅S∣+mghA = |F_{тр.} cdot S| + mghA=∣Fтр.​⋅S∣+mgh.

Пояснение – вывод формулы A=∣Fтр.⋅S∣+mghA = |F_{тр.} cdot S| + mghA=∣Fтр.​⋅S∣+mgh

Формулу A=∣Fтр.⋅S∣+mghA = |F_{тр.} cdot S| + mghA=∣Fтр.​⋅S∣+mgh можно получить, если использовать закон сохранения энергии в присутствии внешних сил. Вспомним, что работа внешних сил равна изменению полной механической энергии:

Aвнешних сил=Eполная мех. 2−Eполная мех. 1A_ ext{внешних сил} = E_ ext{полная мех. 2} — E_ ext{полная мех. 1}Aвнешних сил​=Eполная мех. 2​−Eполная мех. 1​.

Aвнешних сил=Aтянущая наверх сила+Aсила тр.A_ ext{внешних сил} = A_ ext{тянущая наверх сила} + A_ ext{сила тр.}Aвнешних сил​=Aтянущая наверх сила​+Aсила тр.​.

При этом полная механическая энергия меняется только за счёт увеличения потенциальной энергии (скорость остаётся постоянной, кинетическая энергия никак не меняется – а потому никак не фигурирует в законе сохранения):

Eполная мех. 2−Eполная мех. 1=mgh−0E_ ext{полная мех. 2} — E_ ext{полная мех. 1} = mgh — 0Eполная мех. 2​−Eполная мех. 1​=mgh−0.

Тогда можно записать:

Тогда – с учётом работы силы трения – можно переписать наше исходное равенство:

Aтянущая наверх сила−Fтр.⋅S=mgh−0A_ ext{тянущая наверх сила} — F_{тр.} cdot S = mgh — 0Aтянущая наверх сила​−Fтр.​⋅S=mgh−0.

Или:

Aтянущая наверх сила=Fтр.⋅S+mghA_ ext{тянущая наверх сила} = F_{тр.} cdot S + mghAтянущая наверх сила​=Fтр.​⋅S+mgh.

Дополнительно для красоты можно «накинуть» на выражение для работы силы трения модуль – тогда всё точно будет положительно:

Полезным для вас является только «затаскивание» груза на высоту hhh – повышение потенциальной энергии груза. Тогда КПД в этом случае можно записать как

η=Aполез.Aзатр.⋅100%=mgh∣Fтр.⋅S∣+mgh⋅100%eta = frac{A_{полез.}}{A_{затр.}} cdot 100 \% = frac{mgh}{|F_{тр.} cdot S| + mgh} cdot 100 \%η=Aзатр.​Aполез.​​⋅100%=∣Fтр.​⋅S∣+mghmgh​⋅100%.​

Обратите внимание, что у КПД есть некоторое максимальное значение. Разберем задачу

Разберем задачу.

Условие

Для определения КПД наклонной плоскости использовано оборудование, изображённое на рисунке. Ученик с помощью динамометра поднимает брусок с двумя грузами равномерно вдоль наклонной плоскости. Данные эксперимента, записанные учеником, приведены ниже. Чему равен КПД наклонной плоскости? Ответ выразите в процентах.

  • Показания динамометра при подъёме груза, Н – 1,5
  • Длина наклонной плоскости, м – 1,0
  • Масса бруска с двумя грузами, кг – 0,22
  • Высота наклонной плоскости, м – 0,15

Выберите номер правильного варианта ответа.

  1. 10%10 \%10%
  2. 22%22 \%22%
  3. 45%45 \%45%
  4. 100%100 \%100%

Решение

Шаг 1. Давайте вспомним формулу для КПД.

Шаг 2. Теперь определим, что для нас полезная работа.

Тогда можем записать: Aполез.=mghA_{полез.} = mghAполез.​=mgh.

Как видно – в условии задачи есть все величины: и масса, и высота поднятия.

Шаг 3. Выясним, кто или что совершал(о) полную работу: и полезную, и неполезную (то есть затраченную).

Шаг 4. Нам надо найти «затраченную» работу силы тяги. Для этого надо вспомнить формулу, по которой можно найти работу.

η=Aполез.Aзатр.⋅100%=mghF⋅l⋅100%=eta = frac{A_{полез.}}{A_{затр.}} cdot 100 \% = frac{mgh}{F cdot l} cdot 100 \% =η=Aзатр.​Aполез.​​⋅100%=F⋅lmgh​⋅100%=

  • =0,22кг⋅10м/с2⋅0,15м1,5Н⋅1,0м⋅100%=22%= frac{0,22 кг cdot 10 м/с^2 cdot 0,15 м}{1,5 Н cdot 1,0 м} cdot 100 \% = 22 \%=1,5Н⋅1,0м0,22кг⋅10м/с2⋅0,15м​⋅100%=22%.
  • Правильный ответ: 2) 22%22 \%22%.
  • Задачи для самостоятельного решения: #кпд

Элементы, влияющие на мощность

Электродвигатели имеют некоторые минусы, которые неудовлетворительно влияют на производительность работы. К числу особо неприятных моментов относят:

  • слабый электропусковой механизм,
  • сильный уровень пускового тока;
  • неслаженность машинного вала с нагрузкой.

Перечисленное приводит к тому, что полезное действие приспособления понижается. Для увеличения результативности стремятся обеспечить нагрузку движка до 75 процентов и повышать пропорции мощности. Также существуют специальные аппараты для регулирования диапазонов подаваемого тока и его мощности, что также ведёт к росту эффективности и КПД.

Одним из наиболее известных устройств для роста отдачи электродвигателя считается механизм мягкого пуска, который ограничивает быстроту роста стартерного тока. Также можно применять и преобразователи частоты для перемены скорости вращения двигателя посредством перемены частоты напряжения. Перечисленное ведёт к уменьшению трат электроэнергии и осуществляет мягкий старт движка, высокую точность балансировки. Кроме того возрастает пусковой момент, а при неустойчивой нагрузке стабилизируется быстрота движения. В итоге производительность двигателя возрастает.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу. Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Применение в разных сферах физики

Примечательно, что КПД не существует как понятие нейтральное, для каждого процесса есть свой КПД, это не сила трения, он не может существовать сам по себе.

Рассмотрим несколько из примеров процессов с наличием КПД.

К примеру, возьмем электрический двигатель. Задача электрического двигателя — преобразовывать электрическую энергию в механическую. В этом случае коэффициентом будет являться эффективность двигателя в отношении преобразования электроэнергии в энергию механическую. Для этого случая также существует формула, и выглядит она следующим образом: Ƞ=P2/P1. Здесь P1 — это мощность в общем варианте, а P2 — полезная мощность, которую вырабатывает сам двигатель.

Нетрудно догадаться что структура формулы коэффициента всегда сохраняется, меняются в ней лишь данные, которые нужно подставить. Они зависят от конкретного случая, если это двигатель, как в случае выше, то необходимо оперировать затрачиваемой мощностью, если работа, то исходная формула будет другая.

Теперь мы знаем определение КПД и имеем представление об этом физическом понятии, а также об отдельных его элементах и нюансах. Физика — это одна из самых масштабных наук, но её можно разобрать на маленькие кусочки, чтобы понять. Сегодня мы исследовали один из этих кусочков.

https://youtube.com/watch?v=B0rBgKtPEZg

Почему производительность труда так важна в деятельности каждой организации

Производительность труда – это эффективность работы персонала в той или иной отрасли производства и рынка услуг отображается количественным числом изготовленной продукции или проданных услуг конкретным сотрудником за определенный период времени. В основном рассчитывают этот показатель за месяц работы и сравнивают с результатами работы других сотрудников, что работают на аналогичных должностях и имеют те же трудовые обязанности в количественном числе.

Обратным показателем величины производительности труда персонала является трудоемкость. Трудоемкость – это период времени (его количество) на изготовление одной единицы продукции или услуги (в зависимости от сферы деятельности сотрудника в организации).

Если увеличивается эффективность работы персонала организации, то соответственно снижается количество затрат рабочего времени, себестоимость изготавливаемой продукции значительно снижается, повышается общая экономическая эффективность производства.

Эффективность работы персонала прямо влияет на производственный цикл и его обороты. Чем быстрее происходит оборот средств (оборотных), тем скорее эти оборотные средства “освобождаются” из процесса оборота.

На темпы увеличения оборота оборотных средств влияют следующие показатели:

  • увеличения количества и объемов продаж;
  • работа над снижением затрат человеческих ресурсов на изготовление продукции или услуг;
  • постоянное усовершенствование качества и конкурентных способностей товаров и услуг;
  • общее сокращение и ускорение темпов производственного цикла;
  • усовершенствование систем снабжения и сбыта и т.д.

Во всех компаниях постоянно стараются увеличивать количество изготавливаемой продукции или предлагаемых услуг за конкретный период времени, а это в свою очередь сокращает статью по затратах на изготовление одной ее единицы.

В конце каждого месяца отделы кадров (или иные отдели по рекрутингу) проводят статистику по производительности труда персонала в той или иной области. Это могут быть различные производственные отделы в одной и той же фирме. Практикуют методы “слабого звена”: с сотрудниками, с наименьшими показателями по производительности труда персона, проводятся дополнительные обучения, применяются системы штрафов и т.д.

Компаниям не выгодно оплачивать труд персонала, с низкой эффективностью работы, так как это прямо влияет на получение общей прибыли. В то же время сотрудников, с хорошими показателями по производительности труда, постоянно поощряют в виде премий, бонусов, дополнительных отпусков и других видов бонусных программ.

КПД в электродинамике

Мы каждый день пользуемся различными электронными устройствами: от чайника до смартфона, от компьютера до робота-пылесоса — и у каждого устройства можно определить, насколько оно эффективно выполняет задачу, для которой оно предназначено, просто посчитав КПД.

Вспомним формулу:

КПД

η = Aполезная/Aзатраченная *100%

η — коэффициент полезного действия

Aполезная — полезная работа

Aзатраченная — затраченная работа

Для электрических цепей тоже есть нюансы. Давайте разбираться на примере задачи.

Задачка, чтобы разобраться

Найти КПД электрического чайника, если вода в нем приобрела 22176 Дж тепла за 2 минуты, напряжение в сети — 220 В, а сила тока в чайнике 1,4 А.

Решение:

Цель электрического чайника — вскипятить воду. То есть его полезная работа — это количество теплоты, которое пошло на нагревание воды. Оно нам известно, но формулу вспомнить все равно полезно

Количество теплоты, затраченное на нагревание

Q = cm(tконечная-tначальная)

Q — количество теплоты

c — удельная теплоемкость вещества [Дж/кг*˚C]

m — масса

tконечная — конечная температура

tначальная — начальная температура

Работает чайник, потому что в розетку подключен. Затраченная работа в данном случае — это работа электрического тока.

Работа электрического тока

A = (I^2)*Rt = (U^2)/R *t = UIt

A — работа электрического тока

I — сила тока

U — напряжение

R — сопротивление

t — время

То есть в данном случае формула КПД будет иметь вид:

η = Q/A *100% = Q/UIt *100%

Переводим минуты в секунды — 2 минуты = 120 секунд. Теперь намм известны все значения, поэтому подставим их:

η = 22176/220*1,4*120 *100% = 60%

Ответ: КПД чайника равен 60%.

Давайте выведем еще одну формулу для КПД, которая часто пригождается для электрических цепей, но применима ко всему. Для этого нужна формула работы через мощность:

Работа электрического тока

A = Pt

A — работа электрического тока

P — мощность

t — время

Подставим эту формулу в числитель и в знаменатель, учитывая, что мощность разная — полезная и затраченная. Поскольку мы всегда говорим об одном процессе, то есть полезная и затраченная работа ограничены одним и тем же промежутком времени, можно сократить время и получить формулу КПД через мощность.

КПД

η = Pполезная/Pзатраченная *100%

η — коэффициент полезного действия

Pполезная — полезная мощность

Pзатраченная — затраченная мощность

https://youtube.com/watch?v=setzsHZotNw

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:

У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) * 100%

η — коэффициент полезного действия

Aполезная — полезная работа (механическая)

Qнагревателя — количество теплоты, полученное от нагревателя

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

η — коэффициент полезного действия

Qнагревателя — количество теплоты, полученное от нагревателя

Qхолодильника — количество теплоты, отданное холодильнику

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Задача

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Решение:

Возьмем формулу для расчета КПД:

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

Подставим значения:

η = 20 — 10/20 *100% = 50%

Ответ: КПД тепловой машины равен 50%

Задачи и вопросы на цикл Карно

Затрагивая тему тепловых двигателей, невозможно оставить в стороне цикл Карно – пожалуй, самый знаменитый цикл работы тепловой машины в физике. Приведем дополнительно несколько задач и вопросов на цикл Карно с решением.

Задача на цикл Карно №1

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 73,5 кДж. Температура нагревателя t1 =100° С, температура холодильника t2 = 0° С. Найти КПД цикла, количество теплоты, получаемое машиной за один цикл от нагревателя, и количество теплоты, отдаваемое за один цикл холодильнику.

Решение

Рассчитаем КПД цикла:

С другой стороны, чтобы найти количество теплоты, получаемое машиной, используем соотношение:

Количество теплоты, отданное холодильнику, будет равно разности общего количества теплоты и полезной работы:

Ответ: 0,36; 204,1 кДж; 130,6 кДж.

Задача на цикл Карно №2

Условие

Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А=2,94 кДж и отдает за один цикл холодильнику количество теплоты Q2=13,4 кДж. Найти КПД цикла.

Решение

Формула для КПД цикла Карно:

Здесь A – совершенная работа, а Q1 – количество теплоты, которое понадобилось, чтобы ее совершить. Количество теплоты, которое идеальная машина отдает холодильнику, равно разности двух этих величин. Зная это, найдем:

Ответ: 17%.

Задача на цикл Карно №3

Условие

Изобразите цикл Карно на диаграмме и опишите его

Решение

Цикл Карно на диаграмме PV выглядит следующим образом:

  • 1-2. Изотермическое расширение, рабочее тело получает от нагревателя количество теплоты q1;
  • 2-3. Адиабатическое расширение, тепло не подводится;
  • 3-4. Изотермическое сжатие, в ходе которого тепло передается холодильнику;
  • 4-1. Адиабатическое сжатие.

Ответ: см. выше.

Вопрос на цикл Карно №1

Сформулируйте первую теорему Карно

Ответ. Первая теорема Карно гласит: КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела.

Энергетическая ценность солярки и бензина

В состав солярки входит больше тяжелых углеводородов, нежели в бензин. Меньший КПД такого мотора сравнительно с дизельным агрегатом обусловлен энергетической составляющей бензина и способом его сгорания. При сгорании равного количества бензина и солярки большее количество тепла характерно для бензина. Тепло в дизельном агрегате более полноценно преобразуется в механическую энергию. Соответственно, при сжигании равного количества топлива за определенное количество времени именно дизельный мотор выполнит больше работы.

Помимо этого, нужно учитывать особенности впрыска и условия, способствующие качественному сгоранию смеси. В дизельный агрегат топливо поступает отдельно от воздуха и впрыскивается напрямую цилиндр в конце сжатия, минуя впускной коллектор. Результатом этого процесса становится температура, более высокая, чем у бензинового мотора и максимальное сгорание топливно-воздушной смеси.