Повторное заземление вли

Содержание

Повторное заземление в TN-C , (и перемычки в розетках)

=VIP=

Группа: Пользователи Сообщений: 12278 Регистрация: 6.8.2007 Из: СПб Пользователь №: 9143

Хочу уточнить у знатоков старых нормативов:каким документом (до ПУЭ7) была определена обязательность повторного заземления глухозаземленной нейтрали на вводе к примеру в жилое здание ?

Для тех, кто считает, что “перемычки были, есть и будут вне закона” не поленюсь привести п.6.1.20 ПУЭ6 (изд.2000г.)“Заземление или зануление корпусов светильников общего освещения. следует осуществлять:В сетях с заземленной нейтралью: при вводе в светильник кабеля, защищенного провода, незащищенных проводов в трубе или м/р или скрыто без труб (в отступление от гл.1.7) – ответвлением от нулевого рабочего проводника внутри светильника. Эти требования распространяются также на подводку нулевого защитного проводника к нулевым защитным контактам двухполюсных розеток, за исключением устанавливаемых в медицинских лечебных заведениях для электромедицинских аппаратов и в кухнях квартир, гостиниц, общежитий для эл.бытовых приборов, к защитным контактам которых от группового щитка должен прокладываться самостоятельный нулевой защитный проводник.”

Заметьте (belok), не от ВРУ здания, при четырехпроводных распред.сетях. Занулялись в жилых зданиях не только плиты, но и прочие “металлические корпуса стационарных и переносных эл.приемников, относящихся к приборам класса защиты 1”. п.7.1.58. “..Нулевые защитные проводники, предназначенные для зануления металлических корпусов, должны прокладываться от групповых щитков (распределительных пунктов).”

Сообщение отредактировал Олега – 11.5.2011, 23:09

=VIP=

Группа: Пользователи Сообщений: 2308 Регистрация: 6.3.2010 Из: г. Павлодар Пользователь №: 17599

ВСН 59-88 Нормы проектирования15.1. Защитное заземление (зануление) в электроустановках жилых и общественных зданий должно соответствовать требованиям глав 1.7, 7.1 ПУЭ и СНиП 3.05.06– 85.Дополнительно к требованиям ПУЭ в жилых и общественных зданиях заземлению (занулению) подлежат:металлические корпуса светильников, встраиваемых или устанавливаемых в подвесные потолки, выполненные с применением металла.

СНиП 3.05.06-85 ЭЛЕКТРОТЕХНИЧЕСКИЕ УСТРОЙСТВАЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА3.246. При монтаже заземляющих устройств следует соблюдать настоящие правила и требования ГОСТ 12.1.030-81.3.247. Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления при помощи отдельного ответвления.

ГОСТ 12.1.030-81 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление1.1.2. Зануление следует выполнять электрическим соединением металлических частей электроустановок с заземленной точкой источника питания электроэнергией при помощи нулевого защитного проводника.1.7. В качестве заземляющих и нулевых защитных проводников следует использовать специально предназначенные для этой цели проводники, а также металлические строительные, производственные и электромонтажные конструкции. В качестве нулевых защитных проводников в первую очередь должны использоваться нулевые рабочие проводники. Для переносных однофазных приемников электрической энергии, светильников при вводе в них открытых незащищенных проводов, приемников электрической энергии постоянного тока в качестве заземляющих и нулевых защитных проводников следует использовать только предназначенные для этой цели проводники.

Как то с перемычками в розетках слабо вяжется ваш пункт. Для экономии и в светильнике имеется пускорегулирующие аппараты. ИМХО.

Добавлено касательно повторного заземления ПЕН.ГОСТ Р 50571.3-94 Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражений электрическим током413.1.3 Система TN413.1.3.1 Все доступные прикосновению открытые проводящие части электроустановок должны быть присоединены к заземленной нейтральной точке источника питания посредством защитных проводников. Если нейтральной точки нет или она недоступна, должен быть заземлен фазный проводник. Запрещается использовать фазный проводник в качестве PEN-проводника (см. 413.1.3.2).Примечания:1 Если существуют другие точки связи с землей, рекомендуется защитные проводники также присоединять к этим точкам (повторное заземление).2 В больших зданиях, таких как высотные, повторное заземление защитных проводников практически невозможно. В этом случае аналогичную функцию выполняет система уравнивания потенциалов.3 По той же причине рекомендуется заземление защитных проводников на вводе в здания и помещения.

Сообщение отредактировал ink_elec – 12.5.2011, 0:52

Термины, используемые в схемах по выполнению правильно заземления

Схемы ТN являются соединение заземленных частей потребителей с нейтралью источника питания с помощью нулевых проводников.

Чтобы грамотно проводить работы по выполнению заземления, необходимо знать некоторые термины: заземление, заземляющее устройство, заземлитель, сопротивление заземления, контур заземления, электрод заземлителя, удельное сопротивление грунта.

Заземление представляет собой целенаправленное электрическое соединение определенной точки сети, оборудования или электроустановки с заземляющим устройством. В процессе выполнения заземления используют грунт, которому свойственно «впитывать» электрический ток в себя. В электросхеме его считают некоторой точкой, относительно которой сигнал воспринимается.

Совокупность заземлителя или заземлителей и заземляющих проводников называют заземляющим устройством.

Заземлитель — проводящая часть или сочетание нескольких проводящих частей, связанных между собой и находящихся с грунтом в электрическом контакте. Проводящая часть представляет собой металлический элемент любого профиля, способный проводить электрический ток. Конструкция проводящей части может быть самая разнообразная (штырь, труба, пластина, сетка, ведро, полоса). Она находиться в грунте, туда же по установке стекает электрический ток. Конфигурация заземлителя (расположение электродов, количество, длина) зависит от предъявляемых к нему требований, а также способности грунта «поглощать» в себя идущий от электрических установок ток через эти электроды.

Отношение напряжения на заземляющем устройстве к стекающему в землю току называют сопротивлением заземления. Это показатель является основным для заземляющего устройства, который определяет его качество в целом и способность осуществлять свои функции. Сопротивление заземления зависит от двух величин:

  • площадь электрического контакта заземляющих электродов;
  • удельное электрическое сопротивление земли, в которую смонтирован данный заземлитель.

Запрещается соединение заземляющей жилы и нулевой шины между собой.

Заземляющим электродом называют проводящую часть, которая контактирует с локальной землей. Контур заземления и есть сам заземлитель, состоящий из нескольких электродов, соединенных вместе и смонтированных по периметру вокруг объекта.

Параметр, определяющий уровень «электропроводности» земли как проводника называют удельным электрическим сопротивлением грунта. Другими словами, он показывает, насколько хорошо в конкретном грунте будет растекаться электрический ток, идущий от заземляющего устройства. Эта величина зависит от состава грунта, плотности, температуры и влажности, концентрации в нем химических растворимых веществ (кислотных, щелочных остатков, солей).

ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ

Пояснения и комментарии к требованиям главы 1.7 ПУЭ седьмого издания

Людмила Казанцева, ведущий специалист ОАО «НИИПроектэлектромонтаж», г. МоскваВиктор Шатров, сотрудник Госэнергонадзора Минэнерго России, г. Москва

ПУЭ, п. 1.7.55 Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство. Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т. д. в течение всего периода эксплуатации. В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению. Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими. При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опас-ной разностью потенциалов при повреждении изоляции. Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.

Вопрос 1. Как понимать термин «территориально сближенных»?

ОТВЕТ. К «территориально сближенным» (отдельным) следует относить заземляющие устройства, которые расположены на таком расстоянии друг от друга, что между ними отсутствует зона нулевого потенциала. При наличии между заземляющими устройствами зоны нулевого потенциала такие заземляющие устройства обозначаются как «независимые».

Вопрос 2. Какие специальные меры должны быть приняты для защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции?

ОТВЕТ. В качестве специальных мер могут быть использованы, например, питание от разделительного трансформатора, применение двойной изоляции. В установках информационных технологий могут быть применены другие меры.

ПУЭ, п. 1.7.57 Электроустановки до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы ТN. Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания в соответствии с 1.7.78 -1.7.79. Требования к выбору систем ТN-С, ТN-S, ТN-С-S для конкретных электроустановок приведены в соответствующих главах Правил.

Вопрос 1. Каким образом выбирать необходимую систему, если в ПУЭ отсутствуют указания для конкретных видов установок?

ОТВЕТ. Если отсутствуют указания в главах ПУЭ или в других нормативных документах, выбор системы для конкретных видов электроустановок следует производить при проектировании. Предпочтительным является применение системы TN-C-S. В помещениях, в которых постоянно находится неквалифицированный персонал, следует использовать раздельные РЕ– и N-проводники. PEN-проводник может применяться в той части электроустановки, которая доступна только квалифицированному персоналу.

ПУЭ, п. 1.7.59 Питание электроустановок напряжением до 1 кВ от источника с глухо-заземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

Copyright by news.elteh.ru Использование материалов сайта возможно только с письменного разрешения редакции news.elteh.ru При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Воздушные линии электропередач

На опорах воздушных линий электропередач необходимо повторно заземлять PEN-проводник, идущий от трансформаторной подстанции. Это нужно делать, чтобы повысить электробезопасность участков ВЛ и для надежной работы автоматических выключателей. Количество повторных заземлений на трассе воздушной линии определяется проектом электроснабжения.

Такое устройство обязательно применяется на опорах в конце воздушных линий электропередач, на опорах перед вводом в промышленное здание или частный дом, перед ответвлением от трассы ВЛ протяженностью более 200 м. Для монтажа используется подземная часть опоры. Если ее недостаточно, применяется дополнительный контур заземления, обычно состоящий из одного или двух заземлителей.

На опорах уличного освещения должно быть организовано заземление корпусов светильников и всех металлических частей опоры. Для этого используются специальные заземлители и заземляющие проводники. В городской черте не всегда имеется возможность установки стандартных вертикальных заземлителей, поэтому часто используются в качестве заземлителей горизонтальные полосы, заглубленные в землю.

После установки заземлителей обязательно контролируют сопротивление заземляющего устройства специальными приборами. Наличие такого заземления делает безопасным эксплуатацию опор уличного освещения.

Сборка электрического щита учета с УЗО

подключение вводного кабеля СИП 4х16

В первую очередь подключаем все провода большого сечения. В нашем случае это Самонесущие Изолированные Провода (СИП). Всего четыре штуки. Все они алюминиевые, снаружи черная изоляция. Их маркировка выполнена в виде цветной непрерывной полосы.

Желтый, зеленый и красный проводники подключаем на верхние клеммы вводного АВ – это три фазы. PEN – с голубой полосой, в нулевую клемму счетчика электрической энергии.

Обычно это две крайние справа. Можно подключить к любой из них, они внутри соединены.

Зеземления

Далее подключаем к распределительному блоку проводники заземления. В первую очередь, как самый большой, от смонтированного на участке контура. Тудаже заземление токопроводящего корпуса щитка, которое монтируется под специальный болт.

Именно такая схема подключения N и PE отличает систему ТТ от других.

В системе TN-C-S, схему щита учета с УЗО, которой мы уже рассматривали ЗДЕСЬ, всё сделано иначе. Там наоборот, и PEN проводник и контур заземления дома объединены в распределительном блоке. И только после него делятся.

Здесь же вводной СИП с голубой полосой – PEN, по сути является рабочим нулём «N» всей электроустановки. Защитный ноль, он же заземление «PE», берется от смонтированного у во дворе контура.

Заземление опор ВЛ 0,4 кВ: устройство

В качестве опорных конструкций для воздушных линий электропередачи, применяют два вида столбов, которые обладают отличными конструктивными особенностями, и заземление которых производится согласно правилам ПУЭ.

Типы опор:

  • Деревянная;
  • Железобетонная.

Деревянная конструкция, собирается из двух круглых бревен (без коры). Размеры бревен варьируются в пределах: длина 5 – 13 метров, ширина 12 – 26 см. Для обеспечения продолжительности работы данной конструкции, деревянные опоры покрывают специальным антисептическим составом. Деревянные столбы подразделяют на два типа (С 1 и С 2).

Столбы из железобетона, выполнены в виде прямоугольных или трапециевидных конструкций. Данные опоры, обозначаются специальной маркировкой в виде (СВ). После буквенного обозначения, пишутся цифры указывающие на размеры столба.

Например, СВ 95, означает, что железобетонный столб имеет длину 9.5 метра. Существует несколько разновидностей опор, с маркировкой СВ.

Подключение проводников производится следующим образом. Нулевые проводники (рабочий и защитный), подключаются в верхней части железобетонной конструкции. Стоит отметить, для обеспечения правильного подключения, при условии, что конструкция оснащена подкосным столбом, необходимо подключать проводники и к нему.

Подключение на столбе ЛЭП, производится согласно специальной схемы при помощи различных крепежных элементов.

Для осуществления повторного заземления на деревянном столбе, нужно установить заземлитель из металлической проволоки. Данная проволока, прикрепляется к заземлителю, который вбивается в землю. Для проволоки более 6 мм, подбирается заземлитель из оцинковки, менее 6 мм, из металла.

Общие понятия.

Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземление предназначено для отвода токов утечки, возникающих на корпусе электрооборудования при аварийном режиме работы этого оборудования, и обеспечение условий к немедленному отключению напряжения с поврежденного участка сети путем срабатывания устройств защитного и автоматического отключения.

Например: произошел пробой изоляции между фазой и корпусом электрооборудования — на корпусе появился некоторый потенциал фазы. Если оборудование заземлено, то это напряжение потечет по защитному заземлению, обладающему низким сопротивлением, и даже, если не сработает устройство защитного отключения, то при прикосновении человека к корпусу, ток, который остался на корпусе, будет не опасен для человека. Если же оборудование не заземлено — весь ток потечет через человека.

Заземление состоит из заземлителя и заземляющего проводника, соединяющего заземляющее устройство с заземляемой частью.

Заземлителем является металлический стержень, чаще всего стальной, или другой металлический предмет, имеющий контакт с землей непосредственно или через промежуточную проводящую среду.

Заземляющий проводник – это провод, соединяющий заземляемую часть (корпус оборудования) с заземлителем.

Заземляющее устройство – это совокупность заземлителя и заземляющих проводников.

Электролаборатория

Наша электролаборатория производит весь комплекс электротехнических измерений, результаты которых предоставляются в надзорные органы: Энергонадзор Ростехнадзор, пожарным инспекторам. Мы прошли государственную аккредитацию и имеем аттестат установленного образца. Протоколы, выдаваемые нашей организацией, имеют силу юридического документа. Мы располагаем всеми необходимыми средствами измерения. Наши специалисты обладают необходимой квалификацией, владеют методиками электротехнических измерений. Наша лаборатория всегда готова откликнуться на предложения сотрудничества.

Часто нам задают вопросы, каковы нормы контура заземления по ПУЭ, каковы нормы контура заземления по ПТЭЭП? Действительно многие вопросы, связанные с заземлением у значительной части электриков вызывают определенные трудности. Далеко не все, сдавая ежегодный экзамен, радуются, когда среди вопросов встречается вопрос, связанный с сетью заземления. Это касается как простых электромонтеров, так и инженеров электриков.

Как правило, в повседневной работе для большей части электротехнического персонала достаточно общих представлений о назначении заземления и правил присоединения частей электроустановок к сети заземления. Для энергетиков предприятий и организаций, лиц ответственных за электрохозяйство ситуация выглядит иначе.

При посещении предприятия представителями надзорных органов, энергетику необходимо предоставить им протоколы установленного образца. Такие протоколы может составить только аккредитованная электролаборатория.

Результаты измерений сопротивления заземляющих устройств должны соответствовать нормам, прописанным в ПУЭ и ПТЭЭП. Оба документа исчерпывающе регламентируют требования к заземляющим устройствам.

В дальнейшем мы будем рассматривать вопросы, связанные с электроустановками до 1000 В:

Что касается норм сопротивления контура заземления, то следует уяснить, что требования ПУЭ относятся к проектируемым, вновь возводимым и реконструируемым электроустановкам. Протоколы измерений в этом случае составляются один раз в процессе приёмосдаточных работ.

В дальнейшем, при эксплуатации электроустановок начинают действовать нормы ПТЭЭП. Эти правила определяют не только нормы сопротивления контура заземляющего устройства, но и периодичность проведения измерений. Заинтересованного читателя отсылаем к ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 и ПТЭЭП, Приложение № 3, таблица 36. В этих пунктах ПУЭ и ПТЭЭП содержится подробная информация о нормах сопротивления заземляющего контура.

Внимательное знакомство с этими документами показывает, что нормы, определяемые обоими документами, совпадают полностью. В них отражаются измерения, проводимые для контуров заземления электроустановок различного рабочего напряжения. Нормы приводятся для измерений сопротивления контура заземления с учетом присоединения естественных заземлителей и повторных заземлений так и без учёта оных. Приводим сводную таблицу:

Напряжение электроустановки (В) 220- 127 380-220 660-380
Сопротивление без повторных заземлителей (Ом) 60 30 15
Сопротивление с повторными заземлителями (Ом) 8 4 2

Под повторными заземлителями и естественными заземлителями следует понимать способ устройства заземления присоединяемых к сети электроустановок. Например, к трансформаторной подстанции присоединена осветительная сеть жилого дома. В этом случае контур заземления дома является повторным заземлением. Понятно, что измерения проводятся с присоединенными потребителями и при отключении их цепей заземления.

Надо заметить, что методика измерений довольно сложна. Например, рекомендуется проводить измерения в летнее и зимнее время года, когда удельное сопротивление грунта минимально. В другое время года к результатам измерений применяются поправочные коэффициенты. Особые требован предъявляются к местам установки измерительных электродов, например, к расположению их по отношению к подземным коммуникациям, металлическим трубопроводам.

Все нюансы проведения подобного рода измерений способны учесть только профессионально подготовленные специалисты. Для проведения измерений используется только сертифицированные измерительные приборы прошедшие государственную поверку и имеющие клеймо Госповерителя.

Если вы заинтересованы в проведении разного рода электротехнических измерений, обращайтесь к нам. Мы сотрудничаем с заказчиками из Москвы и Московской области. Наши специалисты быстро выезжают на место проведения работ и в кратчайшие сроки выполняют измерения. На все возникающие вопросы мы ответим, если вы обратитесь по контактам, размещенным на нашем сайте.

Правила и требования к контуру заземления

Для того чтобы контур заземления работал эффективно, он должен соответствовать определенным правилам:

  1. Внешний контур должен располагаться на расстоянии не менее 1 м и не более 10 м от дома. Оптимальное расстояние 2-4 м от фундамента.
  2. Заглубление электродов выбирается в пределах 2-3 м. На поверхности оставляется часть штыря длиной 20-25 см для соединения полосой.
  3. От вводного щита до контура прокладывается шина сечением не менее 16 кв. мм.
  4. Увязка электродов между собой обеспечивается только методом сварки. В щите соединение может производиться болтами.
  5. Общее сопротивление системы не должно превышать 4 Ом для 380 В и 8 Ом для 220 В.

Внешний контур заземления располагается в земле, что предполагает повышенные требования к его конструкции. Он должен располагаться ниже уровня промерзания грунта, т.к. вспучивание почвы будет выталкивать электроды. В процессе эксплуатации коррозия не должна разрушать металл и чрезмерно увеличивать его электрическое сопротивление. Прочность стержней должна позволять вбивать их в твердый грунт.

Виды контуров заземления

Для эффективной работы системы заземления оно должно распределять ток “стекания” в землю на несколько электродов увеличивающих площадь рассеивания. Существует два главных вида систем заземления.

Контур заземления — треугольник

В таком виде контура используется три штыря, которые сварены с помощью полос в треугольник с равными сторонами. Между электродами длина выбирается в зависимости от длины заглубления электрода до двух таких глубин. Т.е. для длины электрода (заглубление) 2м, сторона треугольника будет 2-4м.

Контур заземления — треугольник

Линейный

При невозможности сделать замкнутую фигуру из-за конфигурации участка составляется вариант из нескольких электродов, их располагают полукругом или в линию. Между вбитыми штырями промежуток должен составлять 1-1,5 глубины погружения штырей. Минус способа — большое число электродов.

Контур заземления — линейный

Предлагаемые виды самые используемые при проектировании и устройстве систем заземления. Его можно сделать в виде любой геометрической фигуры (прямоугольник, круг и т.д.), но надо понимать что это потребует соответствующее количество заземляющих штырей. Основное достоинство таких систем — при разрыве соединения между электродами функции системы заземления сохраняются.

Важно! Линейный контур работает по принципу гирлянды и повреждение перемычки выводит из эксплуатации определенный его участок.

Для чего нужно

Опоры системы наружного освещения

Заземление для сети опор наружного типа освещения или ВЛ (0,4, 6-10, 20 и 35 кв) играет большое значение, поскольку препятствует риску получения электротравмам при соприкосновении с элементами конструкции в ситуации, когда произошло повреждение изоляции кабеля. При наличии заземления на металлической опоре сети наружного типа освещения или ВЛ, напряжение «разливается» по земле, тем самым становясь безопасным для людей. Данный показатель зависит от того, какое сопротивление имеет почва, в которой установлена опора ВЛ (0,4, 6-10, 20 и 35 кв). В результате, даже если где-то и произошло нарушение изоляции ВЛ, конструкции останутся безопасными.

При штатных условиях работы штыревые изоляторы, смонтированные на опорах, будут обеспечивать надежную изоляцию всех проводов от конструкционных элементов. Но бывают ситуации, когда напряжение в сети значительно превышает то напряжение, на которое была рассчитана ВЛ (0,4, 6-10, 20 и 35 кв). В такой ситуации перенапряжения возможен пробой изоляции ВЛ и, как следствие, выход сети из строя. Для того чтобы ограничить значение перенапряжения и повысить безопасность, необходимо понизить сопротивление для «растекания тока». С этой целью и устанавливают на ВЛ (0,4, 6-10, 20 и 35 кв) и подпорах наружного типа освещения защитное заземление.