Что такое ротор и статор в двигателе: описание, принцип работы в асинхронных электродвигателях, их функции

Содержание

Асинхронные электродвигатели

В предыдущих разделах мы разобрали, почему электродвигатели переменного тока называют также индукционными электродвигателями, или электродвигателями типа «беличье колесо». Далее объясним, почему их ещё называют асинхронными электродвигателями

В данном случае во внимание принимается соотношение между количеством полюсов и числом оборотов, сделанных ротором электродвигателя

Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать следующим образом: частота сети (F), умноженная на 120 и разделенная на число полюсов (P).

Если, например, частота сети 50 Гц, то синхронная частота вращения для 2-полюсного электродвигателя равна 3000 мин-1.             

Синхронная частота вращения уменьшается с увеличением числа полюсов. В таблице, приведенной ниже, показана синхронная частота вращения для различного количества полюсов.

Синхронная частота вращения для различного количества полюсов

Число полюсов

Синхронная частота вращения 50 Гц

Синхронная частота вращения 60 Гц

2

3000

3600

4

1500

1800

6

1000

1200

8

750

900

12

500

600

Нагрев и температурные деформации.

С повышением температуры обмотки статора происходит тепловое старение витковой и корпусной изоляции. Она теряет эластичность, становится хрупкой, и вследствие этого срок службы ее сокращается. Объективно степень старения изоляции определяется ее внешним состоянием. Признаками старения изоляции являются вспухание ее в вентиляционных каналах и в местах выхода из лаза. При нажиме пальцами на изоляцию чувствуется немонолитность и ослабленность изоляции.
Местные перегревы чаще всего являются следствием дефектов активной стали или витковых замыканий. Признаком наличия местных перегревов является разница в степени расслоения изоляции в отдельных местах секции, а также следы и подтеки компаунда. Местные нагревы можно выявить при профилактических испытаниях, но перегревы, связанные с замыканием листов активной стали и витковыми замыканиями, быстро прогрессируют и чаще приводят к пробою обмотки статора во время работы двигателя. Местные нагревы могут возникать при некачественных пайках в соединениях обмотки статора. Большое влияние на состояние изоляции оказывают температурные деформации пазовой части секции, обусловленные неодинаковыми коэффициентами линейного расширения меди и стали. Несмотря на кажущуюся малую величину этих деформаций, их систематическое повторение в течение длительного времени приводит к преждевременному износу изоляции.

Когда нужен ремонт коллекторных электродвигателей?

Неисправность коллектора проявляется выработкой от постоянного контакта с угольными щетками. Образуемая кольцеобразная впадина является причиной пропадания контакта и неустойчивой работы мотора. Для мощных электродвигателей дефект устраняется методом проточки на токарном станке. В агрегатах, предназначенных для бытовой техники, такая процедура не оправдана ‒ выгоднее купить новый якорь.

Иногда причиной выхода из строя двигателя может стать замыкание обмотки ротора, статора, а также пробой изоляции. Поломка проявляется усиленным искрением щеток вплоть до появления кругового огня. Для проверки якорной обмотки мастера сервисного центра применяют метод косвенных измерений, так как сопротивление составляет всего несколько Ом.

С этой целью к обмоткам через амперметр подключается регулируемый источник тока и выставляется значение на первых контактах коллектора. Коммутируя щупом соседние ламели, определяется резкое увеличение показаний прибора, свидетельствующее о наличии короткого замыкания, или резкое уменьшение, указывающее на обрыв обмотки. При неисправности якоря выполняется перемотка обмотки.

Износ или разрушение подшипников является причиной повышенного шума (гула) при работе электродвигателя. Своевременное устранение проблемы позволит не допустить заклинивания вала ротора и выхода из строя других деталей электрической машины. Таким образом, регулярный ремонт коллекторных электродвигателей очень важен. Наша рада предложить собственные услуги по проведению подобных ремонтных работ.

Заказчикам гарантируется грамотная диагностика агрегата, оригинальные запасные части и оперативное восстановление работоспособности электромоторов. Своевременный ремонт коллекторных электромоторов позволяет сэкономить на покупке новых электрических агрегатов и увеличить эксплуатационный ресурс. При первых симптомах, указывающих на проблемы с коллекторными двигателями, воспользуйтесь сервисом, который предоставляют наши специалисты. Клиентам гарантируется низкая цена перемотки электродвигателя и выполнения других ремонтных работ.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в “звезду”, а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Что такое статор ЭД и его назначение?

Статор – это неподвижная часть двигателя, которая работает в паре с ротором. Статор состоит из основания и сердечника. Основание это цельный корпус, изготовленный из сплавов алюминия или чугуна. Сердечник изготовлен листовой электротехнической стали, толщина которой зависит от характеристик двигателя и оставляет от 0,35 до 0,5 мм. В статоре есть пазы, предназначенные для размещения обмотки. Обмотка – это свитые межу собой повода, соединенные параллельным способом, что позволяет при работе уменьшить возникающие вихревые токи. Трехфазная перемотка статора создает электромагнитное поле. В пазы устанавливают определенное количество катушек, которые соединятся между собой.

В случае поломки электродвигателя выполняется перемотка статора. Варианты перемоток зависят от типа изоляции. Изоляцию выбирают в зависимости от показателя максимального напряжения, температуры перемотки, типа паза и вида обмотки.

Используемый материал для обмотки – медная проволока. Перемотка осуществляется в один или два слоя, в зависимости от расположения катушек в пазах.

Ремонт ЭД начинается с очистки или продувки от грязи и пыли составных частей статора. Следующий шаг – разборка корпуса для замены обмотки. При помощи механических инструментов проводят срезку лицевой части статора, где находится перемотка.

Для того чтобы осуществить разборку статор необходимо нагреть до температуры 200 градусов, после чего снятие обмотки и катушек будет более простым. После того как статор разобран прочищаются пазы. В очищенные и подготовленные пазы устанавливают новую обмотку, используя готовые шаблоны. Установленные новые катушки необходимо покрыть лакоми и высушить при температуре 150 градусов, выдержав два часа.

Сопротивлением между корпусом и обмоткой проверять можно только после того, как была выдержана все технология сушки. Использование различного по диаметру кабеля позволяет проводить регулировку параметров работы ЭД.

Во время эксплуатации электродвигателя возможны ситуации, когда детали начинают перегреваться. Это связано с изменением потребляемого тока. Это происходит из-ща размыкания электрической цепи. Еще одна причина нагрева ЭД – износ подшипников. Это негативно сказывается работоспособности обмотки изоляции. Производители устанавливают на всех типах ЭД защиту от перегрева. Она следит и срабатывает в случаях:

  • превышения пускового времени;
  • перегрузка;
  • скачков напряжения;
  • выхода из строя фазных проводов;
  • заклинивания ротора;
  • сбоя приводных устройств.

Обмотока машин постоянного и переменного тока

Классификация статорных обмоток

Обмотки статоров синхронных и асинхронных машин могут выполняться в виде катушечных или в виде стрежневых обмоток. Последние употребляются в турбогенераторах и крупных синхронных машинах с явно выраженными полюсами и рассматриваться здесь не будут.

В современных машинах переменного тока статорные обмотки преимущественно выполняются двухслойными. Однако среди

Так как при намотке катушки витки ее образуют винтовую линию, торцовые стороны катушек не имеют плоской поверхности, что затрудняет закрепление ее на полюсе. Чтобы выровнять катушку, одну ее сторону после намотки осаживают в специальном приспособлении под прессом, чем достигается выравнивание торцовых сторон. На рис. 4-39 показан добавочный полюс с обмоткой.

В случае замены меди алюминием, что в настоящее время иногда практикуется, после намотки катушку подвергают оксидированию. При этом поверхность витков покрывается непроводящей пленкой, которая служит изоляцией между витками. Контактные поверхности выводных концов катушки армируются медными пластинами, которые лудятся, т. е. обеспечивается надежная контактная поверхность. Армирование медными пластинами может производиться холодным способом путем местного вдавливания медной пластины в алюминиевую шину специальным прессом. На рис. 4-40 показаны выводы катушки добавочного полюса, армированные медными пластинами.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Статор элетродвигателя

Статор — это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью — из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.

Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры — класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) – векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном – номинальная частота вращения, мин-1

Начальный пусковой момент – момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя – это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность – физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t – время, с

Работа – скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение – значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя – характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 – подведенная мощность (электрическая), Вт,
  • P2 – полезная мощность (), Вт

При этом

потери в электродвигатели обусловлены:
электрическими потерями – в виде тепла в результате нагрева проводников с током;
магнитными потерями – потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями – потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями – потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n – частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции – скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m – масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) – напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени – это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Напряжение и схема подключения

Как отмечалось выше, схему соединения обмоток выбирают исходя из доступного линейного напряжения в трёхфазной сети. Наиболее распространенное напряжение в РФ это 380/220. Допустим, что у нас есть двигатель, шильдик которого выглядит, как показано на фотографии:

Здесь мы видим обозначение «треугольник/звезда» и напряжения «220/380В» — это значит, что если линейное напряжение в сети 380 – использовать «звезду», как зачастую и делают. Но если линейное напряжение в трёхфазной сети равно 220В, то нужно подключать этот двигатель по схеме «треугольник» (такое встречается и сегодня на старых предприятиях или отдельных участках электросети с напряжениями 220/127 вольт).

Также на эти цифры обращают внимание, когда двигатель подключают к однофазной сети, хоть через фазосдвигающий конденсатор, хоть через частотный преобразователь с однофазным входом и трёхфазным выходом, всегда выбирают ту схему обмоток, которая рассчитана на подключение к сети 220В. Порой попадаются и старые электродвигатели, в которых обмотки рассчитаны на номинальные напряжения 127/220 и они не предназначены для прямого включения в трёхфазную электросеть с линейным напряжением 380В

Их можно подключать только к однофазной сети через конденсатор или частотник, как было отмечено выше, но в этом случае обмотки уже нужно соединять «звездой»

Порой попадаются и старые электродвигатели, в которых обмотки рассчитаны на номинальные напряжения 127/220 и они не предназначены для прямого включения в трёхфазную электросеть с линейным напряжением 380В. Их можно подключать только к однофазной сети через конденсатор или частотник, как было отмечено выше, но в этом случае обмотки уже нужно соединять «звездой».

На предприятиях часто используются мощные электродвигатели, в которых наоборот, схема «треугольник» рассчитана на питание напряжением 380В, а звезда 660В (тогда на шильдике указывается 380/660). Такие двигатели, зачастую, используются, чтобы снизить пусковые токи при пуске, посредством переключения обмоток со схемы «звезда» на схему «треугольник», так как это дешевле, чем использовать частотник или устройства плавного пуска в этих же целях.

Обращайте внимание на то, что написано на шильдике. Неправильное подключение двигателя опасно его преждевременной смертью

Соединим статор и ротор. Что получится?

Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.

Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.

Принцип работы стартера

Стартер работает на законах физики, о которых вам рассказывали ещё в школе. Если поместить между 2-мя полюсами магнита рамку из проволоки с двумя концами, и через неё пропустить ток, то она начнёт вращаться. Вот на каком принципе работает простейший электродвигатель.

Что делает стартер во время запуска? Вся его работа делится на 3 этапа: пуск устройства, подвод шестерни привода к венцу маховика, разъединение привода и маховика. Сам стартер вращает внутри своего механизма якорь под действием магнитного поля, которое приводит маховик в движение.

Время работы пускача очень короткое. После того, как запущен двигатель, стартер отключается и больше не принимает никакого участия в работе автомобиля.

Рассмотрим подробнее принцип работы пускового устройства:

  1. Водитель поворачивает ключ в замке зажигания. Электрический ток от плюсовой клеммы АКБ передаётся на входной контакт стартера, затем на обмотку возбуждения (или магниты), потом на плюсовую щётку с коллектором. После этого ток поступает на рамку якоря и отрицательную щётку, которая соединяется с массой (отрицательной клеммой АКБ). Возникают магнитные поля, которые отталкиваются друг от друга, заставляя вращаться якорь, который втягивается внутрь реле. Соединение АКБ со стартером кратковременно, только в ту секунду, когда водитель поворачивает ключ. Это соединение происходит за счёт медного пятака.
  2. Якорь обладает шлицевым соединением, на него надевается бендикс с шестернёй. Шлицевое соединение даёт этим деталям свободно двигаться по якорю и одновременно передавать крутящий момент на шестерню стартера. Бендикс с шестернёй перемещает вилка. А по какому принципу работает вилка для стартера? Вилку двигает сердечник, который в свою очередь двигает электромагнит в виде катушки, к которой подаётся ток от аккумулятора через замок зажигания. Повторю ещё раз: силовой провод от АКБ соединяется с входным контактом устройства при помощи пятака, именно он соединяется со штоком при включении устройства. Сердечник двигается и толкает шток, обеспечивая замыкание 2 главных контактов. А когда стартер выключен, всё возвращается в исходное положение.
  3. Итак, срабатывает тяговое реле. Якорь выполняет поступательные действия внутри корпуса устройства и происходит выталкивание бендикса. Из-за этого приводная шестерня входит в зубчатый венец маховика. Маховик – это чугунный диск, который гораздо больше, чем приводная шестерня стартера, на который установлен зубчатый венец.
  4. В тот момент, когда шестерня зацепляется за маховик, на электродвигатель подаётся напряжение и происходит подача тока на электродвигатель. Начинается вращение маховика, который в свою очередь приведёт в действие коленчатый вал двигателя.
  5. Всё, мотор запущен, водитель отпускает ключ зажигания. В тот момент, когда обороты двигателя будут выше оборотов стартера, бендикс отойдёт от сцепки с маховиком. Все механизмы пускового устройства вернутся в исходное положение, и он отключится.

Посмотрите видео, там очень понятно рассказано про принцип работы устройства.

Принцип работы роторно-поршневого двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал. Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта. Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала. Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал. Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе.

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт. Сжатие топливно-воздушной смеси в роторном двигателе Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси. В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.