Что такое трансформатор?

Содержание

При каких условиях ток и магнитный поток могут возникать и протекать в электрической цепи?

Согласно законам физики, чтобы произошло образование магнитного поля, и в системе появился электрический ток, следует учитывать ряд факторов, которые обязательно должны быть воплощены. Во-первых, магнитные потоки и электрический ток может образовываться и успешно протекать в тех случаях, если технически создана замкнутая силовая цепь. Во-вторых, в созданной системе должно присутствовали либо магнитное, либо электрическое сопротивление. А еще должен присутствовать внешний импульс, тот самый внешний источник напряжения положенной для созданной цепи энергии. Как дополнение, отметим, что показатели индуктивного сопротивления очень важны для создания условий нормальной работоспособности трансформатора.

Принцип действия и режимы работы

Простой трансформатор снабжен сердечником из пермаллоя, феррита и двумя обмотками. Магнитопровод включает комплект ленточных, пластинчатых или формованных элементов. Он передвигает магнитный поток, возникающий под действием электричества. Принцип работы силового трансформатора заключается в преобразовании показателей силы тока и напряжения с помощью индукции, при этом постоянной остается частота и форма графика движения заряженных частиц.

В трансформаторах повышающего типа схема предусматривает повышенное напряжение на вторичной обмотке по сравнению с первичной катушкой. В понижающих агрегатах входной вольтаж выше выходного показателя. Сердечник со спиральными витками располагается в емкости с маслом.

При включении переменного тока на первичной спирали образуется переменное магнитное поле. Оно замыкается на сердечнике и затрагивает вторичную цепь. Возникает электродвижущая сила, которая передается подключенным нагрузкам на выходе трансформатора. Функционирование станции проходит в трех режимах:

  1. Холостой ход характеризуется разомкнутым состоянием вторичной катушки и отсутствием тока внутри обмоток. В первичной спирали течет электричество холостого хода, составляющее 2-5% номинального показателя.
  2. Работа под нагрузкой проходит с подключением питания и потребителей. Силовые трансформаторы показывают энергию в двух обмотках, работа в таком регламенте является распространенной для агрегата.
  3. Короткое замыкание, при котором сопротивление на вторичной катушке остается единственной нагрузкой. Режим позволяет выявить потери для разогрева обмоток сердечника.

Режим холостого хода

Электричество в первичной спирали равно значению переменного намагничивающего тока, вторичный ток показывает нулевые показатели. Электродвижущая сила начальной катушки в случае ферромагнитного наконечника полностью замещает напряжение источника, отсутствуют нагрузочные токи. Работа на холостом ходу выявляет потери на мгновенное включение и вихревые токи, определяет компенсацию реактивной мощности для поддержания требуемого вольтажа на выходе.

В агрегате без ферромагнитного проводника потерь на изменение магнитного поля нет. Сила тока холостого режима пропорциональна сопротивлению первичной обмотки. Способность противостоять прохождению заряженных электронов трансформируется при изменении частоты тока и размера индукции.

Работа при коротком замыкании

На первичную катушку поступает небольшое переменное напряжение, выходы вторичной спирали накоротко соединены. Показатели вольтажа на входе подбирают так, чтобы ток короткого замыкания соответствовал расчетному или номинальному значению агрегата. Размер напряжения при коротком замыкании определяет потери в катушках трансформатора и расход на противодействие материалу проводника. Часть постоянного тока преодолевает сопротивление и преобразуется в тепловую энергию, сердечник греется.

Напряжение при коротком замыкании рассчитывается в процентном отношении от номинального показателя

Параметр, полученный при работе в этом режиме, является важной характеристикой агрегата. Умножив его на ток короткого замыкания, получают мощность потерь

Рабочий режим

При подсоединении нагрузки во вторичной цепи появляется движение частиц, вызывающее магнитный поток в проводнике. Оно направлено в другую сторону от потока, продуцируемого первичной катушкой. В первичной обмотке происходит разногласие между электродвижущей силой индукции и источника питания. Ток в начальной спирали повышается до того времени, когда магнитное поле не приобретет первоначальное значение.

Магнитный поток вектора индукции характеризует прохождение поля через выбранную поверхность и определяется временным интегралом мгновенного показателя силы в первичной катушке. Показатель сдвигается по фазе под 90˚ по отношению к движущей силе. Наведенная ЭДС во вторичной цепи совпадает по форме и фазе с аналогичным показателем в первичной спирали.

Watch this video on YouTube

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Силовые трансформаторы характеризуются:

  • мощностью;
  • значением напряжений высоковольтной и низковольтной обмоток;
  • типом соединения и количеством катушек.

Для удобства классификации все силовые трансформаторы разбиты на 9 габаритных групп по своим основным характеристикам. Так, силовые трансформаторы с мощностью от 4 до 100 кВА и напряжением не выше 35 кВ, входят в первую группу.

Трансформаторы, у которых мощность выше 200000 кВА, а напряжение от 35 до 330 кВ, входят в 8-ю группу. Более мощные силовые трансформаторы находятся в 9-й группе.

Кроме мощности важной характеристикой является количество и исполнение обмоток. Большинство силовых трансформаторов имеют две трехфазных обмотки.. Два основных класса трансформаторов — сухие и масляные, характеризуются способами охлаждения — естественное или принудительное.

Два основных класса трансформаторов — сухие и масляные, характеризуются способами охлаждения — естественное или принудительное.

Отдельное место занимает способ изменения напряжения на низковольтной вторичной обмотке. Таких способов два — регулируемые под нагрузкой и требующие отключения нагрузки. Обычно регулировка выполняется со стороны высоковольтной обмотки, поскольку по ней протекает меньший ток и снижаются требования к контактным группам.

Такое решение также увеличивает точность регулировки, поскольку для переключения на одну и ту же величину, количество витков обмотки высокого напряжения больше.

Регулировка с отключением нагрузки (переключатель без возбуждения — ПБВ) конструктивно проще, но имеет небольшой предел изменения напряжения — не больше ± 5% и требует полного отключения питания и нагрузки во время переключения. Более сложно выполняется регулировка под нагрузкой — РПН, но там гораздо больший предел регулирования — вплоть до 16 % в обе стороны.

Следующая характеристика силовых трансформаторов — конструктивные особенности и климатическое исполнение. Основным параметром здесь является степень защиты электрооборудования.

Особенности и основные параметры

Устройство и монтаж силовых трансформаторов предполагает размещение станции на стационарной, специально подготовленной площадке. Фундамент сооружения должен быть прочным. На грунте при этом могут монтироваться катки и рельсы.

Внутри металлического корпуса располагаются электрические установки. Он выполнен в виде герметичного бака. Внутренние системы закрывает крышка. Чаще всего применяются масляные разновидности. Они имеют особые технические характеристики. Внутри короба такого агрегата находится масло специального типа. Оно обладает особыми диэлектрическими качествами. Масло отводит излишнее тепло от деталей системы в процессе повышенной токовой нагрузки. Однако есть и другие варианты охладительных систем.

Основными характеристиками, влияющими на функционирование установки, являются:

  • Количество катушек и тип их соединения.
  • Мощность.
  • Значение напряжения обмоток.

Сегодня в системах обеспечения электричеством различных объектов чаще встречаются агрегаты с двумя трехфазными обмотки. Только для бытовой сети применяются однофазные установки. Трехфазный силовой трансформатор распространен больше в сетях электрокоммуникаций.

Система регулировки бывает двух типов. В первом случае необходимо отключать питание перед проведением настройки, а во втором – нет. Регулировка выполняется со стороны обмотки высоковольтного типа. По ней движется меньший ток. Такой тип регулировки позволяет выполнять точную настройку.

Конструкция, предполагающая отключение нагрузки, проще. Однако ее предел изменения небольшой. Регулировка требует полного отключения прибора от сети.

Основные технические характеристики и способы определения параметров

Основные технические характеристики указываются в техдокументации на изделие. Они определяются расчетным путем или посредством замеров на специальном стенде при определенных режимах работы аппарата.

Первичное напряжение номинального значения

Так называют U, которое требуется подать на входную катушку аппарата, чтобы в режиме холостого хода получить номинальное вторичное напряжение. Параметр U указывается в техпаспорте изделия.

Вторичное номинальное напряжение

Это значение U, которое устанавливается на выводах выходной обмотки при ненагруженном трансформаторе. На вход  прикладывается номинальная величина параметра. Значение параметра зависит от величины U и коэффициента трансформации Кт. При  активно-емкостной нагрузке (φ2< 0)  U может оказаться больше U.

Номинальный первичный ток

Это ток I, протекающий во входной обмотке, при котором возможна продолжительная работа аппарата. Значение I указывается в техпаспорте на трансформатор.

Номинальный вторичный ток

Параметр также можно встретить в таблице паспортных данных трансформатора, он протекает по выходной катушке при продолжительной работе аппарата. Обозначается  I.

Соотношением номинального входного и выходного напряжений определяется коэффициент трансформации: К = U/U.

Номинальный коэффициент мощности (cos φ)

Сos φ (косинус фи) определяется отношением активной мощности трансформатора P к полной S: cos φ = P/S. Это величина, показывающая рациональность расходования электроэнергии с учетом реактивных потерь преобразователя.

Коэффициент полезного действия

КПД электромагнитного устройства представляет отношение активной мощности Р2, отбираемой от аппарата, к подводимой P1: η = P2/P1. Величина КПД тем больше, чем выше cosφ2 и коэффициент загрузки β= I2/I.

Что делает трансформатор

У трансформатора много полезных и важных функций:

Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.

Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.

Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.

Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).

Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.

  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.

Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.

Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.

Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.

Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Определение

Напряжение на вторичной намотке зависит от вольтажа на первичной и коэффициента трансформации, оно меняется в каких-то пределах при изменении режима работы, зависящего от загрузки. Если меняется режим работы при неизменном вольтаже на первичной намотке, вместе с напряжением на вторичной меняется электроток. Эта закономерность называется внешней характеристикой.

Основной фактор, влияющий на этот показатель – нагрузочная величина электротока, потребляемого подключенным оборудованием. При повышении мощности подключенного оборудования тока требуется больше, на вторичной намотке преобразователя он повышается, вольтаж снижается. Одновременно с увеличением тока на вторичке увеличивается электроток на первичке, что теоретически должно снизить первичное напряжение. Но оно неизменно, поэтому снижается ЭДС (электродвижущая сила) и электромагнитный поток.

Допустимые нормы колебаний вторичного напряжения при номинальной нагрузке определены ГОСТом. В некоторых преобразователях предусмотрена возможность увеличение или снижение вольтажа на вторичке коррекцией количества витков на одной из намоток, оснащенных дополнительными выводами.

Охладители

Обязательный элемент конструкции любого силового трансформатора. Большое количество электрической энергии, проходя через трансформатор, преобразуется в тепло. Специальная двухконтурная система, заполненная маслом, нуждается в регулярном охлаждении.

Для этих целей используются различные устройства:

  • радиаторы. Конструктивно охладитель состоит из металлических пластин различной конфигурации, которые обладают хорошей теплопроводностью, через которые и выводится тепловая энергия в атмосферу или вторичную охлаждающую среду;
  • гофрированный бак. Универсальное устройство для установок небольшой мощности. Конструктивно он совмещает в себе радиатор и емкость для масла. Тепло выводится благодаря внешним и внутренним гофрированным поверхностям;
  • принудительная вентиляция. Навесные вентиляторы применяют для трансформаторов большой мощности. Благодаря постоянному принудительному охлаждению удается повысить производительность системы до 20-25%;
  • охладители масляно-водяные. На сегодняшний день такие комбинированные конструкции используются чаще всего благодаря их простоте и высокой эффективности;
  • циркуляционные насосы. Устройство обеспечивает регулярное перемещение горячего масла в нижний контур, заменяя его холодным.

Подбор понижающего трансформатора по мощностным характеристикам

Р вых =U нагр. I нагр,

где U нагр — падение напряжения на нагрузке, а I нагр — ток нагрузки.

Далее выбираем трансформатор, у которого расчетное значение Р вых меньше, чем габаритная мощность. Под габаритной мощностью трансформатора понимается максимальная выходная мощность, которую можно получить от трансформатора с определенными габаритами: в конечный физический объем нельзя поместить бесконечное количество проводов. Например, трансформатор с габаритами 10×10×10 мм не может быть мощностью 10 кВт.

Если вторичных обмоток в понижающем трансформаторе несколько, тогда возникает необходимость распределения габаритной мощности между обмотками, для этого надо чётко понимать, будут ли вторичные обмотки нагружены одновременно или нет. В случае, когда вторичные обмотки нагружены одновременно, то выбирать понижающий трансформатор необходимо исходя из условия, что его габаритная мощность должна превышать суммарную мощность всех нагрузок, в противном случае трансформатор будет работать с перегрузкой.

Часто бывает так, что у Вас на складе уже есть похожие понижающие трансформаторы. Как ими воспользоваться, чтобы не покупать новые?

Вторичные обмотки можно соединить параллельно. Что это дает? Возможность пропускать с тем же напряжением больший ток. Но будьте осторожны: параметры вторичных обмоток должны совпадать, иначе одна из них (та, которая рассчитана на большее напряжение) станет сильно перегруженной, а вторичные обмотки с меньшим напряжением — недогруженными или вообще не будут работать.

Выходная мощность в данном случае считается следующим образом:

Р вых =U вых.(I нагр1 + I нагр2 +…+ I нагрN),

где I нагр1 , I нагр2 , и т.д.- это ток нагрузки каждой из вторичных обмоток. Если Вы всё сделаете правильно, они будут одинаковыми.

Вторичные обмотки можно соединить последовательно. Для чего это может понадобиться? Рассмотрим пример: у Вас есть понижающий трансформатор с двумя вторичными обмотками на 12 В, а Вам нужен трансформатор с одной вторичной обмоткой с напряжением 24 В. Вот в этом случае, если Вы соедините две вторичные обмотки по 12 В последовательно, то получите одну вторичную с напряжением 24 В. Мощность при последовательном подсоединении вторичных обмоток можно посчитать как:

Р вых =(U вых1 +U вых2 +…+U выхN).I нагр,

где U вых1 , U вых2 и т.д. — это напряжения каждой из вторичных обмоток.

Выходную мощность трансформатора необходимо брать с запасом, если есть дополнительные требования по ограничению тока холостого хода, напряжения холостого хода и по перегреву.

После этого выбираем типоразмер понижающего трансформатора в пределах габаритной мощности. Необходимо также учитывать, что фактическая габаритная мощность трансформатора будет ниже заявленной изготовителем, если вторичных обмоток несколько.

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Режимы работы трансформатора.

Для трансформатора в режиме активной нагрузки справедливо равенство: U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт

Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;

U
_2
— напряжение на выходе трансформатора, нами задано 36 вольт
;

I
_2
— ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1

, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:S
— площадь в квадратных сантиметрах,
P
_1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S
определяется число витков w
на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8
витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,

округляем до 173 витка
.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,

принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где
: d — диаметр провода
.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.

Площадь поперечного сечения провода диаметром 1,1
мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.

Округлим до 1,0
мм².

Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.

Или два провода: — первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,
— второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».

Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.