Хронология возникновения электричества в России
При определении даты появления электричества в Российской империи можно пользоваться различными критериями
Если брать во внимание общественный резонанс, то такой датой следует считать 1879 год, когда в Петербурге был освещен электрическими лампами Литейный мост. История с электрификацией этого моста имеет несколько курьезный оттенок
Дело в том, что он был построен после того, как частные компании выкупили монополию у властей города на освещение улиц и мостов через Неву масляными и газовыми фонарями. Как следствие, оказался единственным местом, где на тот исторический момент можно было применить электрическое освещение. Справедливости ради стоит упомянуть о том, что годом ранее в Киеве для освещения одного из цехов железнодорожных мастерских были задействованы несколько электрических фонарей, однако это событие осталось без внимания широкой публики.
Многие придерживаются мнения, что с юридической точки зрения эра электричества началась 30 января 1880 года, когда в Русском техническом обществе был создан электротехнический отдел. Именно этой вновь созданной структуре и вменялось в обязанности курировать вопросы, связанные с развитием и внедрением электричества в жизнь державы.
К знаковым датам в истории возникновения электричества в России можно отнести и 15 мая 1883 года, когда по случаю вступления на престол Александра ІІІ была выполнена иллюминация Кремля, для чего даже построили на Софийской набережной специальную электростанцию. В этом же году электрифицируется главная улица Петербурга, а через несколько месяцев и Зимний дворец.
В июле 1886 года по Указу императора создается «Общество электрического освещения», которое разрабатывает генеральный план электрификации Москвы и Петербурга.
С 1888 года начинается целенаправленная работа по строительству первых электростанций.
ГОЭЛРО
Пришедшие к власти после Октябрьской революции большевики в 1920 году приняли план по электрификации страны. Его разработка началась еще во время гражданской войны. Главой соответствующей комиссии (ГОЭЛРО – Государственной комиссии по электрификации России) был назначен Глеб Кржижановский, который уже имел опыт работы с разными энергетическими проектами. Например, он помогал Роберту Классону со станцией на торфе в Московской губернии. Всего в комиссию, создававшую план, вошло порядка двухсот инженеров и ученых.
Хотя проект предназначался для развития энергетики, он также затрагивал всю советскую экономику. В качестве сопутствующего электрификации предприятия появился Сталинградский тракторный завод. Новый промышленный район возник в Кузнецком угольном бассейне, где началось освоение огромных залежей ресурсов.
Согласно плану ГОЭЛРО должно было быть построено 30 электростанций районного значения (10 ГЭС и 20 ТЭС). Многие из этих предприятий работают и сегодня. В их числе Нижегородская, Каширская, Челябинская и Шатурская тепловые электростанции, а также Волховская, Нижегородская и Днепровская ГЭС. Осуществление плана привело к появлению нового экономического районирования страны. История света и электричества не может быть не связана с развитием транспортной системы. Благодаря ГОЭЛРО появились новые железные дороги, магистрали и Волго-Донской канал. Именно посредством этого плана началась индустриализация страны, а история электричества в России перевернула очередную важную страницу. Поставленные ГОЭЛРО цели были выполнены в 1931 году.
Электрический ток
Согласно школьного курса физики – это упорядоченное движение заряженных частиц. Заряженными частицами, в зависимости от среды распространения, считаются электроны или ионы. Для металлов эти частицы – электроны, для некоторых газов или электролитов – ионы. Считается что именно их движение и являются электрическим током.
Как известно, в мире физики, объекты, обладающие разностью зарядов притягиваются, чтобы достигнуть равновесного состояния. Этот факт отлично подтверждает всем известный эксперимент с эбонитовой палочкой. Таким образом, электрический ток — это поток электронов или ионов, стремящихся воссоздать равновесие в мире электрических зарядов.
Не углубляясь в разновидности проводников, рассмотрим обыкновенные электрические провода и электроны, бегущие в них. Электроны заряжены отрицательно, значит их массовое скопление — это отрицательно заряженный объект. В то же время положительно заряженный объект — это место где имеется нехватка этих самых электронов, а значит скопление ионов (атомов с недостающими электронами). Так как природа стремится воссоздать равновесие, образуется поток электронов от минуса к плюсу.
Если природа стремится к равновесию, то отчего же образовались эти недостачи и излишки электронов?
Ответ довольно банален, за исключением некоторых природных явлений вроде молнии или статических разрядов. Люди их создают искусственно, чтобы пользоваться стремлением, или другими словами, силой природы прийти в равновесное состояние, в своих интересах. Как это происходит подробно рассказано в статье про источники тока.
Маленькая особенность: так как само явление электричества было открыто гораздо раньше его природы (упорядоченного движения электронов в металлах), а раньше люди думали, что движутся положительно заряженные частицы), то принято считать, что электрический ток течет от плюса к минусу, хотя сейчас уже ясно, что всё происходит наоборот. В консервативном мире науки решили ничего не менять и продолжают пользоваться веками укоренившейся схемой.
Поняв, как всё это движется, можно попробовать разобраться, что нам даёт этот самый электрический ток. Прохождение электронов по проводнику сопровождается массой удивительных физических явлений, от простого нагревания проводника, до электромагнитного поля вокруг него, но обо всём по порядку.
Как известно, электроны очень маленькие и понаблюдать за ними даже через самый мощный микроскоп не удастся. Поэтому для понимания и визуализации такого действа как электрический ток, придумали очень удобное сравнение — сравнение с водопроводной трубой.
Итак, представим себе водопроводную трубу, она является проводником или просто проводом, очень близко не так ли? В этой трубе течет вода – капли которой очень похожи на электроны, текущие в проводах. Эту воду что-то толкает и ей что-то мешает.
Поток воды можно описать присущими ему свойствами, такими как давление и скорость, а характеристики трубы можно описать такими понятиями как её пропускная способность и сопротивление потоку воды.
По аналогии поток электронов, то есть электрический ток, можно описать такими характеристиками как электрическое напряжение (давление для воды) и сила тока (объём потока воды). Электрический проводник по аналогии с трубой можно описать таким свойством как сопротивление электрическому току (сопротивление потоку воды).
К примеру, тонкая труба может пропустить лишь небольшой поток воды, точно также, тонкий провод способен пропустить поток электронов только с небольшой силой тока. Тонкая струйка, вылетающая из водного пистолета, имеет большую скорость, но очень маленький объем воды, также искра, вылетающая из пьезоэлемента зажигалки, имеет высокое напряжение, но очень маленькую силу тока.
Представим себе огромную трубу диаметром в целый метр и из неё течет, а лучше сказать «вываливается» огромное количество воды, при этом давление в ней довольно низкое (единицы атмосфер), но поток воды просто огромен (сотни литров в секунду). Та же история с толстым проводом точечной электросварки, напряжение там невысокое (несколько вольт), но сила тока просто огромная (сотни ампер), в месте контакта плавится металл. Предположим, что на краю трубы есть кран и он закрыт, вода внутри есть, но она никуда не течёт. Тоже самое с проводником, если цепь от плюса к минусу разорвана, а воздух для электрического тока настолько же труднопроходимая среда, как кран для воды, то ток тоже никуда не течёт. Но электроны из проводника, как и вода из трубы, никуда не делись и напряжение, как и давление в трубе тоже осталось, нет только потока электронов, а значит сила тока равна нулю.
От световой революции — к революции без света
В 1910-х годах электрификация стала постепенно набирать обороты: новые лампы устанавливали на площадях, бульварах, улицах и в переулках, а также вдоль трамвайных путей. К началу 1913 года улицы освещали 440 дуговых фонарей и почти 1300 ламп накаливания. Для сравнения: газовых фонарей с усовершенствованными горелками в городе насчитывалось почти девять тысяч, а на окраинах осталось 11 тысяч керосиновых ламп.
Масштаб использования разных источников уличного освещения можно оценить и по-другому: общая протяжённость улиц с электрическими фонарями составляла всего 19 километров, а длина «керосиновых» улиц — порядка 340 километров. Неудивительно, что городская управа констатировала «слишком слабую освещённость огромного большинства городских улиц и площадей, а равно всех бульваров и скверов».
Первая мировая война, революция 1917 года и последовавшая Гражданская война лишь усложнили ситуацию: множество фонарей вновь было уничтожено. По официальным данным, в 1924 году в городе насчитывалось около пяти тысяч газовых и керосиновых светильников, чуть более сотни дуговых электрических фонарей осталось на главных улицах, а в переулках Замоскворечья и ещё нескольких районах — порядка 3,2 тысячи ламп накаливания.
Газоразрядные лампы
В своё время лампы накаливания наполнялись соединениями брома или йода для предотвращения сгорания спирали. Газоразрядные основываются принципиально на других законах физики. Любопытно, что эффект свечения ртутного барометра замечен ещё в 1675 году французским астрономом Жаном Пикаром. Спустя 30 лет первый вариант газоразрядной лампы продемонстрирован Фрэнсисом Хоксби. Идея состояла в том, чтобы после вакуумирования в стеклянный шар, заряженный статическим электричеством, подать небольшое количество ртути. Света хватало для чтения.
Пока наш соотечественник Василий Петров описывал феномен электрической дуги, сэр Хампфри Дэви в 1802 году демонстрировал Королевскому институту угольные стержни. Дальнейшие исследования в области газоразрядных ламп низкого давления проводились Генрихом Гейслером, в 1857 году создавшим художественные источники света разных оттенков на базе газового наполнителя. Вакуум необходим для облегчения процесса ионизации. В качестве среды разряда использовались аргон, неон, пары ртути и воздух.
Яркими потомками ламп Гейслера стали электронные диоды, триоды и пр. В ходе опытов с газоразрядными лампами Иоганн Гитторф заметил, что движение носителей образуется в полном вакууме. Так родилось знание о катодных лучах, образованных электронами. Дальнейшее развитие источники получили в люминесцентных лампах дневного света, где пары ртути излучают в инфракрасном диапазоне, а видимый спектр получается за счёт накачки энергией люминофора.
https://youtube.com/watch?v=AwPFDK1WyrE
https://youtube.com/watch?v=E9oaTwxocK0
Предысторию указанные виды электрических ламп берут сотни лет назад. Долгое время люди замечали, что отдельные горные породы в силу неизвестных причин мерцают. Впервые явление описано сэром Джорджем Стоуком на примере флюорита. Полярностью описанные разновидности лампочек обзавелись, имея прекрасные технические характеристики, к примеру, малое потребление энергии. А недостатки оставались очевидны до последнего времени: большие размеры, необходимость в наличии драйвера (источника питания).
Городское освещение до электричества
Согласно исследованиям историка Петра Сытина, освещение улиц в Москве ввели указом сената 1730 года. Он предписывал ставить стеклянные фонари на столбах на расстоянии 10 саженей (около 25 метров) один от другого. Горел в них пеньковый фитиль, пропитанный конопляным маслом, а содержать фонари надлежало домовладельцам.
К началу XIX века город имел уже около семи тысяч таких светильников. Правда, нормативы скорректировали: на больших улицах фонарные опоры ставили через 100 метров, в переулках — через 50. Вскоре изменилась и конструкция: пять тысяч фонарей прикрепили к стенам зданий, а столбы оставили только там, где не было строений поблизости; при этом фонари располагались не сверху, а сбоку — на длинных кронштейнах.
Пожар во время Отечественной войны 1812 года уничтожил большинство фонарей, но к 1825 году их «поголовье» даже превысило довоенный уровень и составило около 7,6 тысячи.
Середина XIX столетия — время экспериментов: в 1849 году в Москве поставили 100 так называемых варшавских светильников, где вместо конопляного горело лампадное масло. В 1852 году на улицах появилось порядка 130 спирто-скипидарных фонарей. Их посчитали настолько успешными, что за десять лет число таких фонарей достигло 2,3 тысячи. Но скоро их победил керосин: в 1865 году в городе насчитывалось 9,2 тысячи фонарей с этим горючим.
Нашлась и другая удобная альтернатива маслу: в 1865–1867 годах в Москве построили газовый завод, и уже через год на Садовых улицах установили 3,1 тысячи газовых фонарей. В течение следующих 20 лет их стало почти в три раза больше.
Этапы создания теории
XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.
Появление термина
Английский физик и придворный врач Уильям Гильберт в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.
Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:
- стекло;
- алмаз;
- сапфир;
- аметист;
- опал;
- сланцы;
- карборунд.
Первая электростатическая машина
В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.
В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.
В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.
Два вида зарядов
Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:
- «стеклянный», который теперь именуется положительным;
- «смоляной», называющийся отрицательным.
Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно — отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.
Лейденская банка
В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.
11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.
Бенджамин Франклин
В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.
В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:
- Известное сегодня обозначение электрических состояний (-) и (+).
- Франклин доказал электрическую природу молнии.
- Он смог придумать и представить в 1752 году проект громоотвода.
- Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.
Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.
История создания электрической лампочки
Конечно, история создания лампы неотделима от развития такой науки, как электротехника. Она берет начало с открытия в XVIII веке электрического тока. Это открытие поспособствовало тому, что выдающиеся ученые со всего мира занялись изучением и развитием электротехники, которая к тому времени выделилась в самостоятельную науку.
- XIX век стал веком глобальных открытий. В 1800 году был изобретен гальванический элемент – химический источник тока. Его еще называют вольтовым столбом в честь итальянского ученого Алессандро Вольта.
- В следующем году в Санкт-Петербурге руководство Петербургской медико-химической Академии приобрело электрическую батарею. Это мощное устройство было куплено в кабинет профессора Василия Петрова. Состояла батарея из 420 пар гальванических элементов. Целый год профессор Петров проводил с ней эксперименты, пока в 1908 году не открыл знаменитую электрическую дугу. Она представляет собой разряд, возникающий между угольными стержнями-электродами, разведенными на определенное расстояние. Тогда же и было предложено использовать электрическую дугу как источник света.
- Первым шагом к созданию современных ламп накаливания стало изобретение в 1809 году первой лампы с платиновой спиралью в основе. Сделал это англичанин Деларю.
- Через несколько десятилетий, в 1854 году немецкий ученый Генрих Гебель создал похожее устройство. Главным отличием было то, что он использовал обугленную бамбуковую нить, помещенную в вакуумный сосуд. То есть, этот вариант был уже гораздо ближе к известной всем нам электрической лампе. Гебель продолжал совершенствовать свое изобретение еще пять лет, создав устройство, которое называют первой практической лампой. К сожалению, получить патент он не мог, т. к. был эмигрантом без денег и связей. Тем не менее, он использовал свое изобретение для освещения принадлежавшего ему магазина часов.
- Что касается массового электрического освещения, то здесь несомненный вклад внес наш соотечественник, выдающийся ученый Павел Николаевич Яблочков. Свои эксперименты он начал в России, а затем продолжил в Париже после эмиграции. Именно он создал простую, недорогую и долговечную «электрическую свечу». В 1876 году ученый представил свое изобретение на выставке в Лондоне. В том же году лампы, созданные Яблочковым стали появляться сначала на самых посещаемых улицах Парижа, а затем распространились на весь мир.
И, конечно, говоря об истории электротехники, нельзя не вспомнить ученых, перевернувших мир – Александре Лодыгине и Томасе Эдисоне. Именно они, проводя эксперименты независимо друг от друга, в 70-е годы XIX века создали электрическую лампу.
Электричество в домах и не только
В повседневную жизнь москвичей электричество вошло в начале XX века. Оно стало символом прекрасного будущего, когда человек благодаря новому виду энергии освободился бы от тяжёлого физического труда. К примеру, народные гулянья во время пасхальных праздников в Манеже в 1901 году проводились под девизом «Царство цветов, растений и электричества». Поэтому помещение Манежа не только декорировали, но и снабдили горящими электролампами.
В мемуарах московского губернатора Владимира Джунковского описана иллюминация Москвы к столетию войны 1812 года: «Наиболее людные улицы были буквально залиты многоцветными огнями. Масса домов сияла электрическими лампочками, расположенными по архитектурным линиям домов. Особенно красиво выделялось высокое здание Румянцевского музея (сейчас — Дом Пашкова. — Прим. mos.ru). Роскошно иллюминованы были дома по Софийской набережной».
Появление первых электрических ламп в быту произвело фурор. Люди осознавали наступление новой эпохи, а слово «электричество» стало символом прогресса. Жители буквально атаковали московского обер-полицмейстера просьбами разрешить электрификацию частных владений. В заявках указывали подробные технические характеристики электроснабжения, вплоть до схемы разводки проводов по комнатам. В 1904 году фабрикант Н.М. Зимин провёл электрическое освещение в своём доме на Большой Алексеевской улице, и вечерами его освещали 73 лампы накаливания мощностью 3,5 ватта каждая.
Писатель Юрий Олеша вспоминал: «Это были не такого типа лампы, какие мы видим теперь — разом зажигающиеся в наивысшей силе света, — а медленно, постепенно достигающие той силы свечения, которая им была положена… Я помню толпы соседей, приходивших к нам из других квартир смотреть, как горит электрическая лампа… Свет, конечно, светил голо, резко, как теперь в какой-нибудь проходной будке. Но это был новый, невиданный свет! Это было то, что называли тогда малознакомым удивительным малопонятным словом “электричество”!»
К 1913 году электрическое освещение существовало и в ряде муниципальных учреждений — в городской хлебопекарне, снабжавшей больницы, в домах дешёвых квартир на 2-й Мещанской улице, в Бутырской амбулатории на углу Палихи и Тихвинской улицы, в пятиэтажном здании ночлежного дома имени Ф.Я. Ермакова в 1-м Дьяковском переулке (около Каланчёвской площади).
Костер посреди комнаты
Некрасивая масляная лампа была очень изящной и хорошо придуманной вещью по сравнению с теми лампами, которые были до нее. А были и такие времена, когда вообще никаких ламп не существовало.
Для освещения одной комнаты, было достаточно разжечь всего одну щепку.
Полторы тысячи лет назад на месте теперешнего Парижа мы нашли бы грязный городок Лютецию, состоящий сплошь из деревянных хижин, крытых соломой или черепицей. Войдя в один из этих домов, мы увидели бы огонь, разложенный посреди единственной комнаты. Дым, несмотря на то что в крыше было отверстие, не хотел уходить из комнаты и нестерпимо ел глаза и легкие. Этот первобытный очаг служил людям того времени и лампой, и кухонной плитой, и печкой. Зажигать огонь посреди деревянной постройки было делом очень опасным. Не мудрено, что пожары случались тогда очень часто. Огня боялись, как злого, жадного врага, который только и ждет, как бы напасть на дом и уничтожить его. Печи с дымовыми трубами появились на западе Европы лет семьсот тому назад, а у нас в России еще позже. Перед Октябрьской революцией в российских в деревнях еще были кое-где «черные», или «курные», избы, которые отапливались печами без труб. Во время топки приходилось открывать дверь на улицу. Чтобы спастись от дыма и холода, ребятишки укладывались среди бела дня спать, укрывшись с головой шубами и тулупами.
Хронология основных открытий и изобретений
В современном мире каждый ребёнок в сознательном возрасте сталкивается в доме с электричеством. Первые упоминания о наблюдениях в природе этого физического явления относятся к IV веку д. н. э. Великий философ Аристотель изучал поведение угрей, которые поражали свои жертвы электрическими разрядами.
Легендарный учёный Фалес Милетский, живший в Древней Греции (V век д.н.э.), упоминал в своих трудах о таком явлении, как электричество. Он наблюдал за тем, как янтарь, натёртый комком шерсти, притягивал к себе различную мелочь. Историки признают время описания опытов периодом открытия электричества.
Далее в истории человечества происходит длительный временной промежуток, в котором не осталось сколь-нибудь существенных упоминаний об электричестве.
Лишь, начиная с 17 века, стартует череда открытий и изобретений, касающаяся электроэнергии. Об истории электричества сообщает Википедия достаточно подробно. Вот краткий перечень основных вех развития науки об электрической энергии:
- Англичанин Уильям Гилберт в начале XVII века, изучая магнитоэлектрические явления, ввёл впервые такое понятие, как электричество (янтарность).
- Через два года в 1663 году бургомистр Магдебурга Отто фон Генрике продемонстрировал электростатический прибор, состоящий из серного шара, насаженного на металлическую ось. На поверхности сферы в результате трения о ладони накапливался статический заряд тока, который своим магнитным полем притягивал или отталкивал мелкие предметы.
Электростатическая машина Отто фон Генрике
- Почти через 60 лет (1729 г.) английский физик Стивен Грей опытным путём определил способность проводить ток различных материалов.
- Четыре года спустя (1733 г.) французский физик Шарль Дюфе выдвинул сомнительную версию о существовании двух типов электричества, имеющих стеклянное и смоляное происхождение. Он пояснял это тем, что он получал электрический заряд на поверхности стеклянного стержня и комка смолы путём их трения о шёлк и шерсть, соответственно.
- В 1745 году была изобретена Лейденская банка – прообраз современного конденсатора. Автором изобретения был голландский исследователь Питер ван Мушенброк.
Лейденская банка
- В это же время выдающиеся русские учёные Рихман и Ломоносов в Санкт-Петербурге добиваются получения искусственного грозового разряда в лабораторных условиях. Во время проведения очередного эксперимента, получив электрический удар, погибает Рихман.
- 1785 г. ознаменовался регистрацией в Лондоне закона Кулона, носящего имя его автора. Учёный обосновал величину силы взаимодействия точечных зарядов в зависимости от длины промежутка между ними.
- Спустя несколько лет, в 1791 году, Гальвани выпускает в свет трактат, в котором доказывает протекание электрических процессов в мышцах животных.
- В этой же стране Вольта в 1800 г. демонстрирует гальванический элемент – источник постоянного тока. Прибор представлял вертикальное сооружение из серебряных и цинковых дисков, переложенных бумагой, вымоченной в соляном растворе.
Вольтов столб
- Через двадцать лет датский физик Эрстед обнаружил существование электромагнитного эффекта. Размыкая контакты электрической цепи, он заметил колебания стрелки рядом положенного компаса.
- Спустя год, великий французский учёный Ампер в 1821 г. обнаружил магнитное поле вокруг проводника переменного тока.
- 1831 г. – Фарадей создаёт первый в мире генератор тока. Двигая намагниченный сердечник внутри катушки из металлической проволоки, он зафиксировал проявление электрического заряда в её витках. Учёный был одним из тех физиков, кто первый создал электричество в лабораторных условиях. Им же была обоснована теория об электромагнитной индукции.
Обратите внимание! По мере накопления практики в результате многочисленных опытов стала возникать потребность теоретического обоснования явлений и появления науки, связанной с электричеством
История возникновения освещения
Свет являет собой одну из важнейших жизненных потребностей. Нас бы просто не было на этой планете, если бы не свет, ведь именно он лежит у истоков развития всех живых организмов, так как Солнце снабжает все растения на Земле своей энергией. Но людям естественного освещения недостаточно, и мы изобрели для этого искусственные источники света. По началу это были примитивные факелы и различные горючие смеси, а примерно 400 000 лет до нашей эры Homo Erectus не знали и того: они получали искусственный свет лишь благодаря случайным ударам молнии в дерево или кустарник. Именно природный хаос открыл для нас огонь, который есть один из первейших источников искусственного света.
Приблизительно около 70 000 лет назад появились первые керосиновые лампы, которые создавались на основе полых камней или других оболочек, устойчивых к высоким температурам. Полость заполняли мхом, предварительно пропитывая его животным жиром. К слову, животный жир, в особенности китовый (ворвань), был одним из самых популярных горючих материалов вплоть до 18 столетия, когда изобрели первые электрические лампы. А вот Китай славится изобретением свечей: той самой ворванью пропитывали рисовую бумагу и приделывали фитиль, в результате чего получалась своего рода примитивная свеча.
Со временем в разных уголках мира обнаруживали те или иные технологии горения. Так, в качестве горючих материалов использовали нефть, спермацет, рапсовое масло, пчелиный воск, парафин и многое другое. В начале 19 века сумели получить первый в мире прототип электрической лампы. То устройство слабо напоминало современные лампы, так как это была батарея гальванических элементов, однако именно так был получен первый в истории человечества дуговый разряд.
Тысячи Эдисонов
Лампы настоящего времени сильно различаются с лампой прошлого. Найти в них одинаковые черты практически не возможно.
Когда-то на улицах городов не было ни одного фонаря, а в домах люди проводили вечера при свете сальной свечи или тусклой и коптящей масляной лампы. Если бы мы сравнили эту старинную масляную лампу, которая напоминала чайник, с нашей электрической лампочкой, мы не нашли бы между ними никакого сходства. А между тем от этого уродливого чайника к электрической лампочке ведет длинный ряд превращений, длинная цепь небольших, но очень важных изменений. Тысячи изобретателей, в течение сотен лет трудились для того, чтобы сделать наши лампы ярче и лучше.
Вместо костра горящая щепка
Для освещения жилища незачем было разжигать целый костер, когда для этого достаточно было одной щепки, одной лучины. От очага в доме бывало и дымно, и жарко, да и дров он съедал немало. Вот люди и заменили кучу хвороста одной горящей щепкой — лучиной. От сухого ровного полена откалывали щепку длиной в аршин и зажигали. Лучина была замечательным изобретением. Недаром она просуществовала много веков — почти до нашего времени. Но заставить лучину гореть было совсем не так просто.
Первый факел получили, обмакивая ветку в смолу.
Всякий, кому приходилось ставить самовар, знает, что растопку нужно держать наклонно — горящим концом вниз, иначе она погаснет. А почему? Пламя всегда поднимается вверх по дереву. Это оттого, что воздух около горящего дерева нагревается. А теплый воздух легче холодного. Он поднимается вверх и тянет за собой пламя. Вот поэтому и приходилось держать лучину слегка наклонно, горящим концом вниз — иначе она погасла бы. Но нельзя же было держать ее все время в руках. Поступали проще: втыкали лучину в светец – столбик на подставке. К столбику приделан был железный зажим, в котором и укрепляли лучину. Освещение это было совсем не такое плохое, как может показаться. Лучина давала очень яркий свет. Но сколько от нее было дыму и копоти, сколько с ней было хлопот! Приходилось класть под нее железный лист, чтобы не было пожара, стоять около нее, чтобы вовремя заменить сгоревшую лучину новой. Обыкновенно, в то время как взрослые работали, за лучиной присматривал кто-нибудь из детей.
Первые исследования и открытия
Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.
Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны.
Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.
Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.
Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих статическое электричество, которым до тех пор практически никто не интересовался.
Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.
Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.
В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.