Виды указателей напряжения для домашней сети
Частой ошибкой неопытных пользователей, создающей травмоопасную ситуацию, является использование электрических приборов не по их прямому назначению.
Все электрические приборы, включая индикаторы, создаются для работы только под определенным видом напряжения.
Эта величина всегда указывается производителем на корпусе.
Нельзя пользоваться индикатором на 220 вольт в сети 380 или выше. Это опасно для жизни.
Указатели напряжения до 0,4 кВ могут срабатывать на основе прохождения через них тока с:
- емкостным;
- или активным характером.
В первом случае ток идет через тело оператора, а во втором — минуя его по подключенным к цепи проводникам указателя.
Емкостные индикаторы напряжения
Их выполняют в виде отвертки с контактным кольцом. Острие указателя прикладывают к металлу проверяемого провода или контакту коммутационного прибора, а специальную металлическую площадку касаются пальцем руки.
В этом случае создается электрическая цепь переменного тока, ограниченного встроенным в указатель резистором, по пути:
- потенциал фазы;
- проверяемый проводник;
- внутренняя схема индикатора до контактной площадки;
- человеческое тело;
- контур земли.
Естественно, что ток указателя ограничен до безопасной величины в доли миллиампера. При его появлении загорается свет от вмонтированной в корпусе неоновой лампочки.
Среди старых моделей индикаторов до сих пор работают приборы типов УНН-1х, УНН-1м, ИН-91, УНН-90 и другие подобные конструкции. Зажигание лампочек указателя происходит при контакте с проводником, находящимся под напряжением порядка 70 вольт или больше. На меньшее значение они не среагируют. Рынок современных указателей емкостного типа заполнен многочисленными изделиями из Китая и других стран. В принципе, они оправдывают в работе свою цену, но среди этих конструкций встречаются приборы со светодиодными лампочками, которые не всегда хорошо налажены и отстроены от токов наводок. Обладая завышенной чувствительностью, они могут светиться от наведенного напряжения. Это часто вводит в заблуждение домашнего мастера.
Профессиональные указатели напряжения емкостного типа менее подвержены этому явлению, но все равно полностью не избавлены от него, хоть и могут выполнять ряд дополнительных функций.
Работая с подобными индикаторами можно ошибиться еще и по той причине, что при ярком свете солнца зрительное восприятие светящейся лампочки индикатора ослабляется, ее загорание можно просто не увидеть. Особенно это характерно для светодиодных бюджетных моделей.
При таких условиях лучше работают индикаторы с автономным питанием, дополнительно сигнализирующие о появлении напряжения писком зуммера.
Двухполюсные индикаторы напряжения
Эти указатели тоже работают по факту проходящего через них тока. Их наконечники прикладывают между проверяемыми потенциалами фазы и нуля. Человек не вступает в контакт с контролируемым током, отделен от него слоем усиленной изоляции.
Подобные указатели имеют в своем корпусе сигнальную лампу и два резистора:
- токоограничивающий;
- шунтирующий.
Оба корпуса выполнены из прочного изоляционного материала с щупами и защитными ограничительными кольцами, за пределы которых запрещено располагать пальцы при проверках напряжения. Связь между щупами создана гибким проводом со слоем изоляции повышенной прочности и надежности.
Из старых моделей до сих пор популярны МИН-1. УНН-10. Диапазон рабочего напряжения лежит в пределах 70÷660 вольт, а лампа указателя зажигается от 60÷65. Эти приборы могут работать как в схемах переменного, так и постоянного тока.
Ассортимент современных приборов обширен. Среди них встречаются дорогие электронные и микропроцессорные изделия со множеством дополнительных функций, включающих:
- проверку чередования фаз;
- самодиагностику;
- оценку работы УЗО;
- автовключение;
- подсветку зоны измерения;
- звуковую индикацию и многие другие возможности.
Рекомендовать какую-то марку и производителя на основе опыта их использования довольно сложно.
На показания прибора такой конструкции не влияют паразитные емкости кабеля и связи. За счет этого их информация более достоверна и надежна, чем у емкостных аналогов.
Разновидности коротких замыканий, их проявления
Электрические сети, распределённые проводкой по стенам дома, бывают однофазными и трёхфазными. Трёхфазные тоже имеют разновидности – четырёхпроводные с нейтральным проводом или трёхпроводные без него. Если нагрузка во всех фазах симметрична, можно использовать только 3 фазных провода. Если же нет – обязательно наличие нейтрального провода.
По последним стандартам, ввод осуществляется по пяти проводникам – к 4 вышеупомянутым добавляется ещё провод заземления. Таким образом, в однофазной сети КЗ в скрытой проводке бывает только одно – между фазой и нулевым проводником. Для 3-фазных сетей бывают разные виды коротких замыканий:
между двумя фазными проводниками; между одной из фаз и нулевой жилой; между фазой и заземлением; между нулевым и заземляющим проводниками.
Теперь можно дать определение короткому замыканию. Это – кратковременный или продолжительный контакт двух токопроводящих проводников, имеющих разные потенциалы. При этом сила тока между замкнутыми жилами возрастает многократно.
Если защитный автомат на электрощите вовремя не сработал – начинается перегрев проводников, приводящий к расплавлению изоляции с её последующим возгоранием. Как следствие – возникновение пожара. Кроме того, могут пострадать подключенные приборы и даже люди, если начнут тушить пожар водой, не отключив электричество.
Закон Ома
Закономерность между тремя характеристиками — силой тока I, напряжением U и сопротивлением R — была установлена немецким физиком Георгом Омом в 1826 году. Он выяснил, что они связаны достаточно простым соотношением:
I=U/R
Исходя из формулы и зная какие-либо 2 величины, очень просто найти недостающую третью:
U=I*R
R=U/I
В свою очередь сопротивление зависит от свойств материала и размеров проводника:
R=ρ*l/s, где ρ — удельное сопротивление на 1 м (табличное значение), l — длина, s —площадь проводника.
Потребители в цепи (резисторы) могут быть связаны последовательно, то есть без разветвлений. Чтобы найти общее сопротивление, все значения складываются:
Rобщ. = R1 + R2+…
Сила тока будет одинаковой на всех участках, а напряжение разным:
При параллельном подключении зависимость более сложная:
1/Rобщ.=1/R1+1/R2+…
В этом случае постоянно напряжение, но сила тока на каждом участке разная.
Часто встречаются смешанные схемы, где последовательное и параллельное подключение резисторов сочетаются. Проверить параметры цепи любой конфигурации, можно с помощью измерительных приборов.
Подготовительные работы
Перед началом работы нужно проверить устойчивость и целостность опоры на которую придется подниматься. При подъеме не хватайтесь за повторные заземления или крюки. Работать на опоре с приставных лестниц не рекомендуется, а натягивать провода и вовсе запрещено.
Длина таких лестниц должна быть не более 5 метров, а приставлять ее к столбу можно под углом 60-75 градусов.
Вы просто не сможете при таких условиях комфортно достать до верха опоры. А если потеряете равновесие, за что будете хвататься падая вниз?
Правила работы с приставных лестниц
Если в самом начале обнаружатся какие-либо повреждения или дефекты на ВЛИ — не надежное крепление крюка, поддерживающего или натяжного зажима, все работы следует немедленно прекратить.
Сопротивление заземления
Для снижения напряжения прикосновения до безопасной величины в случае короткого замыкания используется заземлитель. Это устройство обладает небольшим сопротивлением, позволяющим электричеству через токопроводящие элементы перетекать в грунт
Отсюда и происходит название этой важной компоненты системы электробезопасности
Сопротивление заземления нормируется в зависимости от типа объекта и энергопотребления. Так в трехфазных сетях с напряжением 380 В оно не должно превышать 4 Ом, в однофазных на 220 В — 8 Ом.
Проверка работоспособности контура производится специальными измерителями параметров заземления — М-416, MRU-105, Мetrel и другими. В отличие от бытовых мультиметров они гораздо мощнее, имеют длинные щупы, используют в качестве источника питания батарейки, линии электропередач или встроенный генератор. Напряжение в цепи может достигать 1000 В. С помощью таких установок можно измерять сопротивление заземление, удельное сопротивление грунта, а также шаговое и контактное напряжение.
Для проведения работ понадобятся 2 штыря и комплект проводов. Предварительно нужно снять окислы с контактов заземлителя, для этого пригодится рашпиль или напильник.
Потенциальный электрод забивается на расстоянии 15 м от здания, токовый — 30 м, затем соединяются проводами с тестером по схеме. При касании щупом зачищенного контакта заземлителя прибор пропускает ток через электроды, определяет напряжение и силу тока. Он самостоятельно проводит вычисления и выдает показания в Омах.
Еще один способ, который позволяет найти сопротивление заземления, — измерение токовыми клещами. При этом не нужно использовать дополнительные провода и электроды или частично отключать заземлители при сложной схеме подключения. Провода просто охватываются разъемными щечками прибора, внутри которых расположены магнитопроводы. Прилегание проводников и контактов измерителя должно быть максимально плотным, чтобы снизить погрешности. После снятия показаний в одной точке сразу же можно переходить для работы в другое место.
Как измерить напряжение мультиметром
Почти каждому из нас рано или поздно доводилось (или еще придется) столкнуться с задачей измерить электрическое напряжение. Это может понадобиться вам в одной из бесконечного множества бытовых ситуаций, и хорошо бы заранее знать, как и при помощи чего это можно сделать. Для измерения напряжения вам понадобится всего лишь один прибор под названием «мультиметр» и источник электроэнергии. Измерить напряжение завалявшейся батарейки, блока питания для ноутбука, оголенных проводов в квартире — это одни из наиболее частых применений.
В этой статье мы на примере рассмотрим как измерять напряжение электрической энергии при помощи бытового мультиметра.
В качестве примера, для чего это нужно знать каждому, можно привести несколько бытовых ситуаций: замерив напряжение на батарейке можно понять, насколько она «здорова», или может быть её уже можно выбрасывать; лампа в люстре не горит, хотя лампочка новая — стоит проверить, возможно проблема в проводке; при отключении электричества на щитке в подъезде не лишним будет убедиться, действительно ли вы обесточили всю квартиру. В общем, применений масса.
И совсем немного о токе. Напряжение электрического тока измеряется в вольтах (V). Сам ток может быть постоянным (DCV) или переменным (ACV). В розетке и домашней проводке ток всегда переменный, а у всего, где есть «+» и «-» (батареек, аккумуляторов и т.д.) постоянный. Первым делом определите, какой ток вы собрались измерять и выберите на мультиметре соответствующее положение переключателя: DCV — постоянный ток, ACV — переменный ток.
Цифровые значения на мультиметре — это максимальные измеряемые показатели. Если вы даже приблизительно не знаете какое напряжение вам предстоит измерить, начните с установки на самое высокое значение.
Стоит учесть, что многие современные мультиметры умеют сами определять какой ток на них подается — постоянный или переменный. Если ваш мультиметр из таких, то вместо положений переключателя DCV и ACV у вас будет одно положение — V. В таком случае просто выставьте его.
Как проверить высоковольтные провода
Обнаружить под капотом высоковольтные провода не составляет труда, как и их диагностика не таит в себе никаких сложностей. Проверить высоковольтные провода можно тремя способами, каждый из которых позволяет определить, наличие пробоя в них.
Визуальная диагностика
Самый простой способ проверки свечных проводов на наличие нарушения изоляции – это их визуальный осмотр. Необходимо внимательно посмотреть, чтобы по площади изоляции не было трещин, надрезов и сильных потертостей.
Еще один способ визуальной проверки свечных проводов – это наблюдение за их работой в темное время суток. Необходимо ночью открыть капот машины, завести двигатель, выключить фары и понаблюдать за высоковольтными проводами. Если в них имеются сильные пробои изоляции, в темноте «сверчки» будут видны невооруженным взглядом.
Проверка проводом
Для проверки свечных проводов может использоваться обыкновенный провод с зачищенными концами с двух сторон. Необходимо в темное время суток при включенном двигателе одну часть провода замкнуть «на массу» (корпус автомобиля), а второй водить по высоковольтным проводам в поисках места, где зачищенный наконечник начнет выдавать искру
Важно проверить не только изоляционный материал вокруг токопроводящей жилы, но и пластмассовые колпачки
Диагностика мультиметром
Мультиметр в автомобильной диагностике чаще всего используется в качестве вольтметра, но имеется у него и еще одна полезная функция – возможность измерения сопротивления. Чтобы произвести замер необходимо полностью снять высоковольтные провода (или отключить один провод с двух сторон). Далее щупами выставленного в режим омметра прибора следует прикоснуться к двум сторонам провода, в результате чего мультиметр покажет информацию о сопротивлении.
Сопротивление исправных высоковольтных проводов находится на уровне до 10 кОм. При этом варьироваться оно может практически от нуля. Это зависит от типа самих проводов, используемой в них изоляции, длины, наличия микроповреждений и так далее.
Какие бывают виды
Короткое замыкание. Каждый слышал это словосочетание. Многие видели надпись «Не закорачивать!» Часто, когда ломается какой-нибудь электроприбор, говорят: «Коротнуло!» И несмотря на негативный оттенок этих слов, профессионалы знают, что короткое замыкание – не печальный приговор. Иногда с коротким замыканием (КЗ) бороться бессмысленно, а порой и принципиально невозможно. В этой статье будут даны ответы на самые важные вопросы: что такое короткое замыкание и какие виды КЗ встречаются в технике.
Начнем рассматривать эти вопросы под необычным углом – узнаем, в каких случаях короткие замыкания неизбежны и где они не играют роль повреждений. Возьмем за оба конца обыкновенный металлический провод. Соединим концы вместе. Провод замкнулся накоротко – произошло КЗ. Но так как в цепи отсутствуют источники электрической энергии и нагрузка, такое короткое замыкание никакого вреда не несет. В некоторых областях электротехники КЗ, которое мы рассмотрели, играет на руку, например, в электрических аппаратах и электрических машинах.
Взглянем на однофазное реле или пускатель, в конструкции которых есть магнитная система с подвижными частями – электромагнит, притягивающий якорь. Из-за постоянно меняющейся полярности тока, текущего в обмотках электромагнита, его магнитный поток периодически становится равен нулю, что вызывает дребезжание якоря, появляются вибрации и характерное, знакомое всем электрикам гудение. Чтобы избавиться от этого явления, на торец сердечника электромагнита или якоря прикрепляют короткозамкнутый виток – кольцо или прямоугольник из меди или алюминия.
Из-за явления электромагнитной индукции в витке создается ток, создающий свой магнитный поток, компенсирующий пропадание основного магнитного потока, создаваемого электромагнитом, что приводит к уменьшению или исчезновению вибраций, разрушающих конструкцию.
Так же на руку играет короткое замыкание и в роторе асинхронного электродвигателя. Благодаря взаимодействию магнитного поля, создаваемого обмотками статора, с короткозамкнутым ротором, в роторе по уже упомянутому закону появляются свои токи, создающие свое поле, что приводит ротор во вращение
Конечно, важно грамотное проектирование электродвигателя или электрического аппарата, чтобы токи, протекающие в короткозамкнутых элементах, не приводили к перегреву и порче изоляции основных обмоток
Возгорание розетки
Подобным образом понятие «короткое замыкание» используется применительно к трансформаторам. Люди, так или иначе связанные с энергетикой, знают, что одна из важнейших характеристик трансформатора – это напряжение короткого замыкания, UКЗ, измеряемое в процентах. Возьмем трансформатор. Одну из его обмоток, скажем, низшего напряжения (НН) закоротим амперметром, сопротивление которого, как известно, принимается равным нулю. Обмотку высшего напряжения (ВН) подключаем к источнику напряжения. Повышаем напряжение на обмотке ВН до тех пор, пока ток в обмотке НН не станет равным номинальному, фиксируем это напряжение.
Делим его на номинальное напряжение высшей стороны, умножаем на 100%, получаем UКЗ. Эта величина характеризует потери мощности в трансформаторе и его сопротивление, от которого зависит ток короткого замыкания, ведущий к повреждениям. Поговорим наконец о коротких замыканиях, несущих негативные последствия. Такие короткие замыкания появляются, когда ток от источника питания протекает не через нагрузку, а только через провода, обладающие ничтожно маленьким сопротивлением. Например, трехфазный кабель питается от трансформатора, и одним неосторожным движением ковша экскаватора происходит его повреждение – две фазы закорачиваются через ковш. Такое КЗ называют двухфазным. Аналогично по количеству замкнутых фаз называют другие КЗ.
Однофазное замыкание на землю в сетях с изолированной нейтралью не является коротким, но может представлять угрозу жизни живых существ. Металлическим называют КЗ, в котором переходное сопротивление равно нулю – например, при болтовом или сварочном соединении. Токи КЗ в зависимости от напряжения и вида повреждения могут достигать тысяч и сотен тысяч ампер, приводить к пожарам и колоссальным электродинамическим усилиям, «выворачивающим» шины и провода. Защита от КЗ может осуществляться автоматическими выключателями или предохранителями, а в высоковольтных сетях – средствами релейной защиты и автоматики.
Защита блока питания от короткого замыкания.
Определение с помощью мультиметра
Любой домашний электрик должен иметь в своем наборе инструментов мультиметр. Это универсальный тестер, позволяющий проверять работоспособность электронных компонентов, измерять напряжение и силу тока, а также прозванивать цепи. Недорогое и качественное устройство с простейшим функционалом можно купить за 300-500 рублей. Профессиональные электрики используют более дорогие приборы с дополнительными опциями и минимальной погрешностью.
Мультиметры бывают двух видов по способу работы – электронные и аналоговые. Стрелочные или аналоговые – это простой прибор со стрелкой. Цифровой мультитестер показывает значения цифрами. Метод определения для обоих видов устройств одинаков.
Правила работы с мультиметром:
- Нельзя проводить измерения при повышенной влажности.
- Не используются неисправные щупы.
- Предел измерения должен превышать измеряемое значение.
- При замерах запрещено крутить ручки или ставить другие пределы.
В настоящее время активно используются именно цифровые мультиметры. Алгоритм проверки может отличаться.
Проводка из трех проводов без маркировки
Можно выбрать метод исключения. Чтобы найти фазу, мультиметр следует собрать и поставить щупы слева и справа – черный в разъем COM, красный – в разъем для измерения напряжения. Переключатель следует поставить в сектор переменного напряжения V
или ACV. Стрелкой выбирается граница напряжения – оно должно превышать сетевое. На тестере можно увидеть значения 500, 600, 750 Вт в зависимости от модели.
Затем проводятся измерения напряжения между зачищенными жилами. Может получиться 3 варианта:
- Между нулем и фазой должно быть напряжение, близкое к сетевому 220 В.
- Между фазой и землей также может быть 220 В. В случае защиты линии системой УЗО автомат может сработать. Если УЗО отсутствует или есть минимальный ток утечки, показываемое напряжение будет в пределах погрешности номинала.
- Между нулем и землей напряжение нулевое.
Проверка контакта в розетке непосредственным замером напряжения
Мультиметр подготавливается, производится контрольное измерение напряжения в розетке. Это позволяет убедиться в отсутствии обрывов на линии и работоспособности самого устройства. Если полученные на дисплее цифры корректны, подсоединение выполнено верно.
Красным щупом нужно коснуться тестируемого проводника. В случае проверки розетки щуп ставится в гнездо. Если проверяется зачищенный конец кабеля, рекомендуется подключаться через зажим-крокодил. Второй щуп прикасается к пальцам руки. На дисплее замеряются показания. В случае установки черного щупа на ноль напряжение будет нулевым или близким к нулю. При попадании на фазу напряжение будет достигать десятков или сотен вольт.
Касание щупа рукой в данном измерении безопасно. Предварительно прибор тестировался на исправность, поэтому человек не будет поражен электрическим током, опасным для жизни. Но даже несмотря на безопасность процедуры не все могут переступить психологический барьер. Тогда можно коснуться щупом штукатурки, потолка или обоев. Они имеют небольшую влажность, поэтому показания на тестере будут видны. Они будут ниже необходимого значения, но определить фазу таким способом реально. Также в качестве второго контакта можно использовать любой заземленный прибор (отопительный радиатор, водопровод) или металлический каркас без заземления.
Поиск нуля и земли
Определение фазы не вызывает сложностей. Труднее отличить ноль от земли. Есть разные методики определения, но они все не являются достоверными. Точно выявить назначение жилы можно при помощи профессиональных приборов из арсенала специалистов.
Один из способов – проверка мультиметром. Если срабатывает УЗО, можно судить о том, что тестер был подключен между фазой и землей. При контакте с фазовым и нулевым проводником защитное устройство не срабатывает. Это связано с тем, что при замере между фазовой и заземляющей жилой образуется небольшой ток утечки, которого может не хватить для срабатывания защитной системы.
Второй способ – прозвон с помощью мультитестера. Мультиметр переводится в состояние измерения сопротивления. Диапазон можно поставить до 200 Ом. Обязательно нужно отключить напряжение на щитке. После этого следует проверить напряжение между проводниками и заземленным предметом. Значение сопротивления на заземляющей жиле должно быть ниже, чем на нулевой.
Причины короткого замыкания
Замыкание в цепи освещения Основной фактор, вызывающий короткое замыкание – это резкое возрастание силы тока. Оно сопровождается снижением сопротивления электропроводки и приводит к повышению температуры выше нормального значения. Это приводит к тому, что может произойти возгорание легковоспламеняемых материалов.
Почему происходит короткое замыкание:
- Износ электросети. С течением времени изоляция изнашивается, оголяется часть провода, и на этом участке может произойти короткое замыкание.
- Влага. Попадание жидкости на изоленту, защищающую скрутку, может произойти во время затопления. Это приводит к отклеиванию липкой стороны ленты и оголению места соединения.
- Механическое воздействие на изоляцию. Во время ремонтных работ можно случайно вбить гвоздь в место прокладки кабеля и повредить защитный слой. Также перегрызть провода могут грызуны.
- Перегрузки электросети в течение длительного времени. Приводит к плавлению изоляции.
- Неправильный выбор номинала автоматического выключателя. Устройство защиты может не среагировать и пропустить скачки напряжения, из-за чего повышается риск возникновения короткого замыкания.
- Неверно выбраны электропровода для проводки.
- Слабый и ненадежный контакт в месте соединения двух проводников или при подключении к розетке, выключателю, распределительной коробке. Если электропроводка старая, может встречаться соединение, выполненное методом скрутки. Если неправильно замкнуть контакт, он быстро нагревается, разрушается и может коротнуть.
- Поломка электроприбора, который приводит к закорачиванию всей электрической цепи.
Основной причиной любых коротких замыканий является поврежденная изоляция проводников или неисправные потребители электроэнергии. В некоторых случаях замыкание возникает по таким причинам, о которых водитель даже не догадывается.
Короткое замыкание в машине, произошедшее из-за нарушенной изоляции, прежде всего связано с неправильной прокладкой проводов. Жгуты могут соприкоснуться с раскаленной трубой глушителя, а отдельные провода нередко пережимаются какими-либо предметами во время проведения ремонта. Некоторые детали автомобиля буквально окружены проводами, поэтому о поврежденной изоляции никто не догадывается до самой поломки.
Существует отдельная категория причин, никак не связанных с электрическим током. На первый взгляд все находится в целости, но, тем не менее, замыкание присутствует. Нередко такие ситуации возникают в определённых условиях, после установки дополнительных деталей и оборудования.
Особенно часто это происходит в районе колесных арок или в задней части кузова. Во время монтажа используются саморезы, которые попадая внутрь пространства повреждают изоляцию проводов, хотя снаружи это совсем незаметно. Вполне естественно, что такую неисправность обнаружить очень проблематично. Поэтому перед началом тюнинга и других работ следует изучить электрическую схему и точно установить места прокладки тех или иных проводов.
Следует особенно отметить причину, связанную с недостаточными знаниями и квалификацией водителя. Человек берется за самостоятельный ремонт, считает, что все делает правильно, а в конце концов его действия приводят к замыканиям. Многие из них проявляются не сразу, а по мере включения некоторых видов оборудования.
Как зачистить провод
- 1 Особенности строения проводов
- 2 Зачистка ножом
- 3 Использование бокорезов
- 4 Метод оплавления
- 5 А если эмалированный провод
- 6 Удаление фторопластовой изоляции
- 7 Автоматический стриппер
- 8 Коаксиальный кабель
- 9 Ножи для зачистки изоляции кабеля
В процессе монтажа проводов одним из самых ответственных этапов работ является снятие изоляции
Неважно алюминиевый провод, медный, покрытый эмалью или пластиковой изоляцией, в каждом отдельном случае необходимо соблюдать технологию при его зачистке. Если игнорировать рекомендации и советы о том, как зачистить провод, то технические характеристики изготовленной электрической системы будут низкими
Рассмотрим несколько методик по снятию изоляции с самых разных проводов с покрытием.
Видео по теме
https://youtube.com/watch?v=JBlYWSzkY7I
Как видно, мультиметр, являясь специализированным прибором, очень востребован в быту. Рассмотренный режим прозвонки и определения сопротивления позволяет с легкостью диагностировать обрыв или замыкание в электропроводке (электрооборудовании).
Почти каждому из нас рано или поздно доводилось (или еще придется) столкнуться с задачей измерить электрическое напряжение.
Это может понадобиться вам в одной из бесконечного множества бытовых ситуаций, и хорошо бы заранее знать, как и при помощи чего это можно сделать.
Для измерения напряжения вам понадобится всего лишь один прибор под названием «мультиметр» и источник электроэнергии. Измерить напряжение завалявшейся батарейки, блока питания для ноутбука, оголенных проводов в квартире – это одни из наиболее частых применений.
В этой статье мы на примере рассмотрим как измерять напряжение электрической энергии при помощи бытового мультиметра.
В качестве примера, для чего это нужно знать каждому, можно привести несколько бытовых ситуаций: замерив напряжение на батарейке можно понять, насколько она «здорова», или может быть её уже можно выбрасывать; лампа в люстре не горит, хотя лампочка новая – стоит проверить, возможно проблема в проводке; при отключении электричества на щитке в подъезде не лишним будет убедиться, действительно ли вы обесточили всю квартиру. В общем, применений масса.
И совсем немного о токе. Напряжение электрического тока измеряется в вольтах (V). Сам ток может быть постоянным (DCV) или переменным (ACV). В розетке и домашней проводке ток всегда переменный, а у всего, где есть «+» и «-» (батареек, аккумуляторов и т.д.) постоянный. Первым делом определите, какой ток вы собрались измерять и выберите на мультиметре соответствующее положение переключателя: DCV – постоянный ток, ACV – переменный ток.
Цифровые значения на мультиметре – это максимальные измеряемые показатели. Если вы даже приблизительно не знаете какое напряжение вам предстоит измерить, начните с установки на самое высокое значение.
Стоит учесть, что многие современные мультиметры умеют сами определять какой ток на них подается – постоянный или переменный. Если ваш мультиметр из таких, то вместо положений переключателя DCV и ACV у вас будет одно положение – V. В таком случае просто выставьте его.
Удаление фторопластовой изоляции
Фторопластовая изоляция
Под фторопластом подразумевается полимер, который производится химическим методом. Он обладает рядом положительных характеристик, например, не промокает от воды и обладает высокой устойчивостью по отношению к органическим веществам. Его технические характеристики позволяют ему выдерживать температуру до 300° С! В качестве изоляции является идеальным вариантом, но главный недостаток высокая цена. В связи с этим его использую в особенных случаях. В быту он применим многими радиолюбителями, так как после пайки он обладает эстетичным видом, занимает немного места и не оплавляется.
Сам же материал имеет форму тонкой узкой ленты. Она, в свою очередь, плотно намотана на свитый многожильный провод. Зачистить подобную изоляцию возможно только ножиком. Фторопласт соскабливается до нужной длины. Как только провод оголился, изоляцию отводят на нужную длину, а оставшийся фторопласт отрезается.
Настройка мультиметра перед прозвонкой
Режим прозвонки
Перед началом замеров переключатель на мультиметре нужно выставить в режим прозвонки (->Ι- и значок зуммера).
Концы измерительных проводов с щупами нужно установить в соответствующие гнезда. Черный провод — в гнездо СОМ, а красный – в гнездоVΩmA. Данная комбинация позволит соблюдать полярность при проведении измерений, однако в случае проверки целостности проводов прозвонкой роли никакой не сыграет.
Далее, чтобы убедиться что мультиметр исправен, черный и красный щуп нужно замкнуть друг с другом. При этом должен прозвучать сигнал (если имеется зуммер), а на экране высветиться значение близкое или равное нулю.
Рассмотрим варианты прозвонки кабеля.
Поиск двух жил в кабеле прозвонкой или мультиметром.
а) Если в кабеле все жилы одного цвета, но есть одна цветная, то поступают так: с одной стороны кабеля цветную жилу соединяют с нужными двумя, чтобы получилась тройная скрутка.
Затем с противоположной стороны кабеля черным щупом прозвонки «садятся» на цветную жилу, а красным щупом поочередно касаются всех оставшихся жил. Как только при касании к очередной жиле загорится лампочка, то искомая жила найдена. И таким образом продолжают поиск до тех пор, пока не будет найдена вторая жила. Таким способом можно найти и три и пять жил и т.д.
б) Если в кабеле все жилы одинакового цвета, то поступают также как и в первом случае. Две нужные жилы соединяют между собой с одной стороны кабеля, а с другой стороны кабеля производят поиск. Черным щупом прозвонки «садятся» на любую свободную жилу, а красным щупом поочередно касаются оставшихся жил (рис. 1). Если при касании к одной из жил лампочка загорелась, то пара найдена, если же лампа не загорелась, то черным щупом подключаются к следующей свободной жиле, а красным опять касаются оставшихся жил (рис. 2). Жилу, которая не прозвонилась, отгибают в сторону, чтобы по ошибке ее не прозвонить повторно.
в) Кабель можно прозвонить, используя его защитную металлическую оболочку, называемую броней. В этом случае броню используют так же, как и цветную жилу. На одном конце кабеля жилу соединяют с броней, а с противоположной стороны эту жилу ищут относительно брони: черный щуп соединяют с броней, а красным ведут поиск.
Поиск жил в кабеле с помощью трубок.
а) Если в кабеле все жилы одного цвета, но есть одна цветная, то кабель прозванивают относительно этой жилы. С правой стороны кабеля черный щуп трубки «сажают» на цветную жилу, а красный щуп подключают на свободную жилу. С левой стороны кабеля черный щуп второй трубки также «сажают» на цветную жилу, а красным щупом осуществляют поиск.
б) Если кабель имеет защитную металлическую оболочку его можно прозвонить относительно этой оболочки. Черным щупом трубка с батареей подключается к броне, а красным щупом к искомой жиле. С противоположного конца кабеля вторая трубка черным щупом подключается к броне, а красным щупом осуществляется поиск.
Также для прозвонки кабеля можно использовать шину заземления
, которая прокладывается по периметру промышленного здания, цеха и т.п. Жилы прозваниваются относительно заземления точно так же, если бы Вы звонили относительно цветной жилы или брони.
Безопасная и правильная работа мультиметром
Работа с электрическими приборами и сетями должна быть безопасной. Это правило относиться и к процедуре прозвона проводников мультиметром. Выделим основные рекомендации, которых нужно придерживаться перед началом и в ходе работ:
- В первую очередь, цепь должна быть полностью обесточена посредством выключения автомата в распределительном щит, извлечения элементов питания (если рассматриваемый объект — электронный прибор).
- Имеющиеся в цепи конденсаторы должны быть разряжены закорачиванием. Иначе, при измерительных работах мультиметр может выйти из строя.
- Для удобства при прозвонке рекомендуется на концах измерительных проводов использовать специальные наконечники («крокодилы»). Данные приспособления создают надежный контакт с исследуемым проводником и, при этом, освобождают руки.
- Пытаясь зафиксировать щуп, не рекомендуется прикасаться пальцами рук к оголенным проводам и кончику щупа. В противном случае, полученные результаты могут быть некорректными.