Схема управления двигателем на igbt транзисторах

Стойкость к короткому замыканию

Среди ключевых параметров работы силовых модулей следует отметить их устойчивость к внешним воздействиям. Один из таких параметров — стойкость к току короткого замыкания. Модули производства АО «Ангстрем» в четыре раза превосходят импортные аналоги по времени стойкости к току КЗ.

На испытаниях IGBT-кристаллы АО «Ангстрем» продемонстрировали высокую устойчивость к перегрузке по току короткого замыкания в течение 40 мкс, в то время как у импортных аналогов она заявлена не более 10 мкс (рис. 2).

Рис. 2. Устойчивость IGBT-модуля АО «Ангстрем» к току короткого замыкания:
а) напряжение коллектор-эмиттер;
б) ток коллектора;
в) напряжение затвор-эмиттер

Из приведенных данных видно, что транзистор имеет шестикратный запас прочности по току перегрузки в течение 40 мкс при V = 800 В, Vge = ±15 В (для IGBT-модуля 75 А 1200 В).

Устойчивость к току короткого замыкания весьма важна при работе в схемах электропривода. Также весьма высокой оказалась надежность модуля при работе в условиях высоких температур.

Типы транзисторов

В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.

В таблице ниже представлена цветовая маркировка транзисторов:

Цветовая маркировка транзисторов

Биполярные транзисторы

Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами.

В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов. Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.

Слово “транзистор” составлено из слов TRANSfer и resISTOR – преобразователь сопротивления. Он пришел на смену лампам в начале 1950-х. Это прибор с тремя выводами, используется для усиления и переключения в электронных схемах.

Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость).

Таким образом формируют один из электродов транзистора, называемый базой. Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.

Классификация биполярных транзисторов.

Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам. Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.

Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.

Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Напряжение пробоя

Напряжением пробоя (BVDSS) называется напряжение сток-исток, при котором обратносмещенный внутренний p-n-переход между р-областью и областью дрейфа пробивается и за счет лавинного процесса увеличения носителей заряда через прибор начинает протекать значительный ток, даже если исток и затвор закорочены. Для напряжений ниже BVDSS и при отсутствии смещения на затворе канал не образуется, и все напряжение стока падает на закрытом внутреннем p-n-переходе. BVDSS обычно измеряется при токе стока 250 мкА.

Рис. 6. Зависимость тока стока от напряжения сток-исток при различных значениях напряжения на затворе

Кроме пробоя за счет лавинообразного процесса, в неудачно разработанных или некачественно изготовленных приборах могут существовать два связанных по смыслу явления, приводящих к подобному результату. Оба этих эффекта вызываются «проколом» p-n-перехода. В первом случае область обеднения внутреннего p-n-перехода в области p (рис. 6) доходит до области истока при напряжениях, меньших, чем напряжение пробоя BVDSS. Область p в месте прокола фактически перестает существовать, что можно охарактеризовать как прокол базы паразитного биполярного транзистора. Для тока появляется путь в обход канала, что вызывает «мягкий» пробой, характеристика которого показана на рис. 7. Ток утечки между истоком и стоком обозначается как IDSS. Существует определенная дилемма — уменьшение сопротивления канала за счет его укорочения с одной стороны, и попытка избежать явления прокола за счет удлинения канала — с другой. Проколу также может быть подвержена область дрейфа, что имеет место при достижении подложки областью обеднения внутреннего p-n-перехода со стороны области дрейфа (n—) при напряжениях ниже напряжений образования лавины в эпитаксиальном слое. Как только область обеднения заходит в насыщенную носителями область подложки, дальнейшее повышение напряжения стока приводит к быстрому достижению критической величины напряженности поля в 2×105 В/см, при котором начинается лавинообразный процесс.

Рис. 7. Зависимость тока стока от напряжения сток-исток при пробое

Причины нагрева модулей и необходимость их охлаждения

Поскольку наши ключи не являются идеальными, то есть, они не обеспечивают идеального короткого замыкания, то в открытом состоянии их сопротивление не равно нулю. Значит, на этом сопротивлении рассеивается джоулево тепло. Это один источник, и не самый значительный.

Кроме открытого состояния, есть еще переходные процессы, связанные с включением и выключением. В этот период сопротивление коллектор-эмиттер уменьшается от нескольких гОм, до единиц или десятков миллиОм. В момент равенства сопротивления ключа сопротивлению остальной цепи, рассеиваемая мощность достигает максимума. Затем мощность спадает до уровня открытого состояния. Получается импульс мощности. Если мы проинтегрируем его по промежутку времени, в течение которого происходит процесс включения, то найдем тепловую энергию этого импульса.

При выключении происходит нечто аналогичное, но в обратном направлении. Потери в цепи управления, на фоне потерь в силовой цепи, выглядят игрушечными ими можно пренебречь (это проблемы не потребителей, а разработчиков). Потери в открытом ключе – это понятие академическое, на практике составляют ноль безоговорочно. Картина включения и выключения IGBT хорошо показана ниже.

V( GE ) – напряжение затвор-эмиттер, I( C ) – ток коллектора.

При включении IGBT возникает импульс тока, при выключении – импульс напряжения, за счет индуктивного характера нагрузки. Динамический диапазон может быть довольно значителен, а скорость переходных процессов весьма небольшая. Чтобы подавить обратные всплески напряжения, нужны импульсные быстродействующие диоды, от которых также, в свою очередь, требуется и быстрое восстановление. IGBT переключаются с частотой ШИМ-модулятора, а это единицы и более десятка кГц.

Чем выше выбирают частоту модуляции, тем точнее можно воспроизвести синусоиду, но тем больше и потерь переключения, те больше греется радиатор модуля и тем больше радиопомех возникает. Чем меньше частота модуляции, тем легче работать модулю IGBT, но тем больше гармоник тока в силовой цепи и ее реактивная мощность. Поэтому потребителю дается возможность выбирать частоту модуляции ШИМ в пределах 2…16 кГц (разные модели частотников имеют разные диапазоны) с дискретным шагом в несколько ступеней.

На радиаторах модулей IGBT может рассеиваться мощность от единиц Вт, до нескольких кВт, в зависимости от мощности модулей. В общем и целом, можно считать, что  современные модули IGBT рассеивают в тепло около 0,3…0,5% коммутируемой мощности. Это довольно неплохо, по сравнению с техникой прежних лет.

Устройство и принцип работы

Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.

Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:

  • К — коллектор.
  • Э — эмиттер.
  • З — затвор.

Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.

https://youtube.com/watch?v=QhQ_X_332cU

Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.

Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.

Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.

Полевые транзисторы с изолированным затвором (МДП-транзисторы)

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri

Транзистор IRG4BC13K для регулятора мощности

IGBT-транзистор данного типа оснащен специальным кремниевым затвором. Пропускная способность эмиттера в данном случае составляет более 4 мк. Для того чтобы повысить чувствительность коллектора, многие специалисты советуют применять двоичные шины. Устанавливаются они в регуляторе сразу за транзистором

Также важно учитывать параметр выходной мощности устройства

Если он превышает 40 В, то двоичную шину в такой ситуации лучше не использовать. В противном случае тепловые потери будут довольно значительные. Еще одна проблема с транзисторами данной серии заключается в быстром перегреве коллектора. Происходит это при смене фазы. Связан этот процесс, как правило, с понижением индукции

Для того чтобы исправить эту ситуацию, важно поменять в регуляторе конденсаторы. Некоторые специалисты вместо закрытых элементов устанавливают полевые аналоги

Принцип работы устройства

В приборах используются различные IGBT-транзисторы. Принцип работы их основан на колебаниях предельной частоты. При этом параметр полосы пропускания также изменяется. В зависимости от размера базы, номинальное напряжение системой выдерживается разное. При подаче тока на эмиттер он изменяет свою полярность.

Дальше у его основы проходит процесс преобразования. При этом переходы устройства не задействуются. Для увеличения предельной частоты к цепи подключается коллектор. Через его переходы ток поступает на базу. Последняя фаза преобразования происходит на выходе через проводники. Драйверы IGBT-транзисторов подбираются, исходя из серии модели.

Базовые параметры IGBT-транзисторов

Ключевыми параметрами IGBT-транзисторов, определяющими потенциал применения, являются их быстродействие, величина пробивного напряжения и рабочие токи. На рис. 1 показан потенциал применения IGBT-транзисторов (по таким параметрам, как быстродействие и пробивное напряжение) компании IR.

Рис. 1. Технологический потенциал различных поколений IGBT-транзисторов от IR

Все выпускаемые в настоящее время линейки транзисторов 6‑го поколения IR по быстродействию относятся к категории ultrafast, что соответствует диапазону рабочих частот от 8 до 30 кГц.

IGBT выпускаются в различных корпусных исполнениях: отдельные транзисторы (Single) и транзисторы со встроенными диодами (Co-Pack). Новые IGBT с антипараллельным ультрабыстрым диодом имеют более низкое напряжение насыщения коллектор-эмиттер VCE(on) и меньшую энергию переключения Ets, чем транзисторы PT- и NPT-типа. Кроме того, ультрабыстрый диод с мягким восстановлением дополнительно повышает эффективность преобразования и снижает уровень генерируемых помех.

Электронные ключи

Для повышения коэффициента полезного действия устройств силовой электроники широко используется импульсный режим работы диодов, транзисторов и тиристоров. Импульсный режим характерен резкими изменениями токов и напряжений. В импульсном режиме диоды, транзисторы и тиристоры используются как ключи.

При помощи электронных ключей выполняется коммутация электронных схем: подключение/отключение схемы к/от источникам(-ов) электрической энергии или сигнала, подключение или отключение элементов схем, изменение параметров элементов схем, изменение вида воздействующего источника сигнала.

УГО идеальных ключей показаны на рисунке:

Ключи, работающие на замыкание и размыкание соответственно.

Ключевой режим характеризуется двумя состояниями: «включено»/»выключено».

Идеальные ключи характеризуются мгновенным изменением сопротивления, которое может принимать значение 0 или ∞. Падение напряжения на идеальном замкнутом ключе равно 0. При разомкнутом ключе ток равен 0.

В реальных ключах токи и падения напряжения, соответствующие состояниям «включено»/»выключено», зависят от типа и параметров применяемых диодов, транзисторов, тиристоров и переход из одного состояния в другое происходит не мгновенно, а в течение времени, обусловленного инерционностью активного элемента и наличием паразитных емкостей и индуктивностей коммутируемой цепи.

Реальные ключи также характеризуются двумя крайними значениями сопротивления Rmax и Rmin. Переход от одного значения сопротивления к другому в реальных ключах происходит за конечное время. Падение напряжения на реальном замкнутом ключе не равно нулю.

Ключи подразделяются на ключи, используемые в маломощных схемах, и ключи, используемые в силовых схемах. Каждый из этих классов имеет свои характеристики.

  • Сопротивлениями ключа в открытом и закрытом состояниях;
  • Быстродействием – временем перехода ключа из одного состояния в другое;
  • Падением напряжения на замкнутом ключе и током утечки разомкнутого ключа;
  • Помехоустойчивостью – способностью ключа оставаться в одном из состояний при воздействии помех;
  • Чувствительностью ключа – величиной управляющего сигнала, переводящего ключ из одного состояния в другое;
  • Пороговым напряжением – значением управляющего напряжения, в окрестности которого происходит резкое изменение сопротивления электронного ключа.

Потери в транзисторах

Различают 3 типа потерь мощности на транзисторах: статические, динамические, в цепи управления.

Первые обусловлены токами утечки в запертом состоянии, сопротивлением полупроводникового кристалла. Статические потери рассчитывают по формуле:

где U(0) – падение напряжения, Iср и Irms – средний и среднеквадратичный ток соответственно.

Динамические потери возникают при открывании и запирании транзистора. Они определяются по графику и зависят от частоты коммутаций, температуры, напряжения на коллекторе, тока в момент переключения.

Потери в цепи управления полупроводниковым элементом ничтожно малы и при практических расчетах его величиной можно пренебречь.

В области частот 10-20 кГц потери мощности на IGBT-транзисторах малы и не вызывают сильного нагрева, который приводит к тепловому пробою.

Имитационное моделирование преобразовательных устройств на побисторах и IGBT

В начале 90-х годов творческие связи нашей кафедры с предприятиями-заказчиками распались, а автор был вынужден перейти на работу в Смоленский государственный педагогический институт (ныне университет СмолГУ). Основным направлением научных работ стало исследование и внедрение систем компьютерной математики. В частности, это позволило не забывать о проектировании мощных высокоскоростных импульсных устройств, в том числе побисторов и IGBT, и перевести его в иную плоскость — математического моделирования.

Моделирование IGBT, как и других полупроводниковых приборов, возможно с помощью программ схемотехнического моделирования типа PSpice, DesignLab, MicroCAP, PCAD и использованием достаточно полных моделей приборов. Однако диапазон значений параметров IGBT очень широк. Различны и технологические приемы, применяемые при их создании. Учет всех тонкостей работы приборов в таких программах усложняет их модели и увеличивает время моделирования и число параметров. Часто эти электрофизические параметры моделей пользователю просто неизвестны, и он вынужден брать их «с потолка», что снижает точность моделирования. Кроме того, часто требуется моделирование систем, состоящих из разнородных устройств, в том числе магнитных, механических, гидравлических и т. д. Но, если сравнить рис. 5 и 8, становится очевидно, что семейства ВАХ по качественному их виду мало различаются у первых не очень мощных побисторов и у новейших сверхмощных IGBT. Исследования показали, что они качественно мало отличаются и в динамике переходных процессов переключения. Поэтому широкое распространение получило имитационное макромоделирование электронных схем и устройств на этих замечательных приборах. Их математические макромодели были включены в ряд программных средств.

Пожалуй, одними из самых эффективных и простых являются средства макромоделирования и формальные модели этих приборов, вошедшие в специальный пакет расширения по мощной энергетике SimPowerSystem матричной системы компьютерной математики MATLAB . Он реализует блочное визуально-ориентированное имитационное моделирование с применением универсального пакета расширения Simulink. Система MATLAB-Simulink давно стала международным стандартом в области технических расчетов и имитационного математического моделирования технических устройств, в том числе мощной электроники и энергетики.

В библиотеки моделей последних версий пакета SimPowerSystem системы MATLAB-Simulink входят два блока макромоделей одиночных IGBT — без шунтирующего диода и с ним. На рис. 10 показано обозначение IGBT и его формальная модель. Она содержит блок логического управления и идеальный ключ SW.

Рис. 10.
а) Обозначение IGBT;
б) формальная модель IGBT

Система параметров модели IGBT предельно проста. Открытый IGBT представляется последовательным сопротивлением Ron, индуктивностью Lon и источником напряжения сдвига V1. Таким образом, идеализированная ВАХ прибора соответствует показанной на рис. 11. Она является линейным приближением для рабочего участка ВАХ включенного IGBT.

Рис. 11. Идеализированная ВАХ IGBT

Идеализированные временные диаграммы выключения IGBT представлены на рис. 12. Процесс выключения разбит на две стадии: спада тока от максимального значения Imax до 0,1·Imax за время Tf и от значения 0,1·Imax до 0 за время Tt. Предусмотрено шунтирование выходной цепью, содержащей последовательно включенные резистор Rs и конденсатор с емкостью Cs (по умолчанию равные 105 Ом и бесконечность Inf). Это значит, что по умолчанию IGBT шунтирован сопротивлением 105 Ом.

Рис. 12. Идеализированные временные диаграммы выключения IGBT

Указанные выше характеристики модели задаются в окне параметров IGBT, показанном на рис. 13. Это окно появляется на экране дисплея компьютера, если дважды щелкнуть мышью на блоке IGBT в диаграмме модели. Окно содержит 8 простых параметров (в модели IGBT программы схемотехнического моделирования DesignLab, к примеру, таких параметров 18 , и многие из них известны только разработчикам этих приборов).

Рис. 13. Окно параметров IGBT

Второй блок содержит шунтирующий IGBT диод. Окно его параметров представлено на рис. 14. Этот блок часто применяется в схемах с индуктивным накопителем энергии. Диод предотвращает подачу на IGBT напряжения обратной полярности. Идеализированных параметров у этой модели IGBT всего три.

Рис. 14. Окно параметров IGBT с шунтирующим диодом