Маркировка стабилитронов в стеклянном корпусе и правильный подбор параметров

Содержание

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта.  Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Классическая модель

Классические стабилизаторы – это большой класс устройств, собираемых на основе таких полупроводниковых деталей, как биполярные транзисторы и стабилитроны. Среди них основную функцию по поддержанию напряжения на уровне 12 В выполняют стабилитроны – разновидность диодов, подключаемых в обратной полярности (к катоду такого полупроводникового прибора подключается плюс источника питания, к аноду – минус), работающих в режиме пробоя. Суть работы данных полупроводниковых деталей заключается в следующем:

  • При напряжении подключенного к стабилитрону источника питания меньше 12 В он находится в закрытом положении и не участвует в регулировке данной характеристики электрического тока.
  • При превышении порога в 12 Вольт стабилитрон «открывается» и поддерживает данное значение в заданном его характеристиками диапазоне.

В случае превышения напряжения, подаваемого на стабилитрон, относительно заявленного как максимальное производителем прибор очень быстро выходит из строя из-за эффекта теплового пробоя.

В зависимости от подключения различают два варианта классического стабилизатора: линейный – регулировочные элементы подключаются последовательно нагрузке; параллельный – стабилизирующие напряжение устройства располагаются параллельно запитываемым приборам.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Виды стабилизаторов

В простейшем варианте применяют ограничитель сил тока из резистора, установленного последовательно в цепь со светодиодом. Стандартные приборы подключают к источникам 5V (12V). Увеличивая напряжение, можно улучшить точность, однако при этом снизится КПД.

Максимальные значения электрических параметров источника должны быть на 10% больше рабочих значений светодиода. Падение напряжения указано в сопроводительной документации. Для расчета резистора (R) применяют следующую формулу:

(Uп – Uc)/ Iпот,

где:

  • Uп – напряжение источника питания;
  • Uc – падение на светодиоде;
  • Iпот – ток потребления.

Пример:

  • Uп = 5 V;
  • Uc = 2,5 V;
  • Iпот = 0,25 А;
  • R = (5-2,5)/0,3 ≈ 8,33 Ом;
  • ближайший номинал – 8,45 Ом;
  • мощность резистора = 0,3*0,3*8,45 ≈ 0,75 Вт.

К сведению. Последняя строка расчета наглядно демонстрирует энергетические потери. Нагревающийся резистор будет повышать температуру окружающей среды.

Усовершенствованные схемы собирают из следующих компонентов:

  • трансформатором изменяют нужным образом амплитуду сигнала;
  • для выпрямления применяют обычный мостик из диодов;
  • конденсаторами сглаживают пульсации;
  • резисторами ограничивают выходные токи.

Транзисторный стабилизатор напряжения и тока отличается экономичностью. Электрическое сопротивление во входной цепи устанавливают в качестве датчика. Этот компонент дополняет стабилитрон. Изменение напряжения на эмиттере позволяет регулировать выходные параметры автоматически без контроля и вмешательства со стороны пользователя.

Аналогичные функции вместо стабилитрона способен выполнить эмиттерный переход биполярного транзистора при соответствующем включении в электрическую схему.

Полевой транзистор применяют для подключения цепочек из нескольких светодиодов, других мощных нагрузок

Вместо набора из нескольких радиодеталей удобнее пользоваться специализированными микросхемами. Такие изделия обеспечивают высокую точность поддержания рабочих параметров выходного сигнала. Как в примере со стабилитроном, в определенной цепи устанавливают резистор для оперативного детектирования изменения силы тока.

Отдельно следует отметить импульсные схемы стабилизаторов. Такие изделия создают на основе быстродействующих электронных ключей. Главной особенностью является возможность оперировать с относительно высокими значениями выходных напряжений.

Справочник по импортным полевым транзисторам.

В справочнике по MOSFET транзисторам приборы рассортированы в порядке возрастания напряжения и тока, приведен

тип корпуса, что удобно для подбора транзистора в справочнике по параметрам под конкретную задачу. Справочник

подойдет и для подбора аналогов, хотя транзисторы с одинаковым током и

напряжением могут и не быть взаимозаменяемыми — необходимо внимательно

сравнивать характеристики. Импортные взяты исключительно из прайсов магазинов, и это повышает

их шансы на доставаемость. В практических применениях полевые транзисторы

конкурируют с БТИЗ (смотри IGBT справочник). И те, и другие управляются напряжением, приложенным к затвору и выбор между IGBT и MOSFET чаще всего определяется
частотами переключения и рабочим напряжением. На низких частотах и высоких напряжениях эффективнее IGBT, а на высоких
частотах и низких напряжениях предпочтительнее MOSFET. В середине этого диапазона все определяется параметрами
конкретных приборов. Производители IGBT выпускают транзисторы со все более высокими скоростями переключения,
а производители MOSFET, в свою очередь, разрабатывают приборы с высокими рабочими напряжениями, умудряясь сохранять
низкое сопротивление стока. Например, весьма хорош полевой транзистор IPW60R045.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Схемы подключения стабилитрона и стабистора в схему

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

↑ Анализ работы параметрического стабилизатора [1 – 5]

Исходные данные анализа следующие: Uн, Iн, ΔIн, ΔUвх, R.Также для анализа необходимы параметры стабилитрона: Uст= Uн, rд, Iст max и Iст min.Анализ сводится к вычислению рабочего тока стабилитрона Iст р=(Uвх-Uст)/R-Iн; коэффициента передачи Nст= Uвх/Uст; мощности Po балластного резистора, коэффициента стабилизации Kст, КПД и коэффициента фильтрации Kф.Важной является проверка режима работы стабилитрона в схеме стабилизатора, которая выполняется по формулам, аналогичным приведенным в первом варианте расчета

↑ Пример анализа №1

Проанализируем номиналы балластных резисторов R3 и R4 компенсационных стабилизаторов напряжения усилителя «Ланзар» в зависимости от используемого напряжения питания.Заявлен диапазон питающих напряжений усилителя от Uп=±30 В до ±65 В, в то время как на принципиальной схеме указаны сопротивления балластных резисторов R=R3=R4=2,2 кОм (1 Вт) .В другой публикации рекомендуется выбирать величину сопротивления балластных резисторов в зависимости от напряжения питания усилителя по формуле R=(Uп-15)/I, где I=8…10 мА. В таблице 1 выполнен расчет по указанной формуле для диапазона питающих напряжений усилителя с шагом в 5 В.

Исходные данные для анализа: стабилизированное напряжение на нагрузке Uн=15 В, ток в нагрузке Iн=(15-0,5)/R5=14,5/6,8=2,13 мА, ΔIн=0,213 мА, изменение входного напряжения ΔUвх=10%.Выберем стабилитрон 1N4744A, имеющий следующие параметры: Uст= Uн=15 В; rд=14 Ом; Iст max=61 мА; Iст min=5 мА.Анализ работы параметрических стабилизаторов в усилителе «Ланзар» показал, что минимальный ток стабилизатора Iст р min выбран на пределе с запасом всего 3…14% вместо требуемых 20% (рис. 5).

Рис. 5. Режимы работы стабилизаторов в усилителе «Ланзар» в зависимости от выбранного напряжения питания

Используя средство анализа данных электронной таблицы Microsoft Excel «Подбор параметра», уточним сопротивления балластных резисторов. Для этого перейдем в ячейку с формулой для Iст р min (ячейка C26

) и в меню выберемДанные -> «Анализ «что-если »->Подбор параметра .Установим в ячейкеC26 значение 6,0 (запас 20% от Iст min), изменяя значение ячейки, в которой занесено сопротивление балластного резистора ($C$15 ).Получим R=1,438 кОм. Занесем в эту ячейку ближайшее значение сопротивления из стандартного ряда R=1,3 кОм.Проведя в таблице указанную операцию для всех значений питающих напряжений, получим следующий результат (рис. 6).

Рис. 6. Уточнение режимов работы параметрических стабилизаторов усилителя «Ланзар» Итоги анализа сведены также в таблицу 2.

Мощность резисторов для напряжений питания усилителя от ±30 В до ±40 В – 0,5 Вт, для остальных напряжений – 1 Вт.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

Стабилитрон и диод

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г. Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

The KMPlayer 3.0.0.1441 LAV сборка 7sh3 от 02.11.2011 [2011, Мультимедиаплеер]

Год выпуска: 2011Жанр: МультимедиаплеерРазработчик: http://www.kmplayer.com/Сайт разработчика: The KMPlayerЯзык интерфейса: Мультиязычный (русский присутствует)Тип сборки: StandardРазрядность: 32/64-bitОперационная система: Windows XP, Vista, 7Системные требования: — 50 МБ свободного дискового пространства Описание: The KMPlayer — это универсальный проигрыватель, который способен проигрывать практически любые форматы медиафайлов, например: VCD, DVD, AVI, MKV, Ogg Theora, OGM, 3GP, MPEG-1/2/4, WMV, RealMedia, QuickTime и другие. Также программа понимает cубтитры на DVD дисках и способн …

Принцип работы стабилитрона

Когда диод включён в прямом направлении (анод – «+», катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор

, а при включении в обратном направлении (анод – «–», катод – «+») через диод может проходить лишьток Iобр , который имеет значение нескольких мкА. Если увеличиватьобратное напряжение Uобр на диоде до определённогозначения Uобр.max произойдёт электрический пробой диода и если ток достаточно вели, то происходит тепловой пробой и диод выходит из строя. Диод можно заставить работать в области электрического пробоя, если ограничить ток, который проходит через диод (напряжение пробоя для разных диодов составляет 50 – 200 В).

Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви

вольт-амперной характеристики, в области жепрямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом Обозначение стабилитрона

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Диоды полупроводниковые

Быть может, раздел называется несколько тривиально, нужно было обычные диоды отличить от морально устаревших электронных ламп, современнейших SMD модификаций. Рядовые полупроводниковые диоды – самое простое горе радиолюбителя. Боковина цилиндрического корпуса с дисковым основанием, ножками содержит нанесенную краской легко различимую надпись.

Полупроводниковые резисторы. Отличите невооруженным глазом?

Цвет корпуса значения не играет, размер косвенно указывает рассеиваемую мощность. У мощных диодов зачастую в наличии резьба под гайку крепления радиатора. Итог расчета теплового режима показывает недостаток собственных возможностей корпуса, система охлаждения дополняется навесным элементом. Сегодня потребляемая мощность падает, снижая линейные размеры корпусов приборов. Указанное позволило использовать стекло. Новый материал корпуса дешевле, долговечнее, безопаснее.

Первое место занимает буква или цифра, кратко характеризующая материал элемента:

  1. Г (1) – соединения германия.
  2. К (2) – соединения кремния.
  3. А (3) – арсенид галлия.
  4. И (4) – соединения индия.
  • Вторая буква в нашем случае Д. Диод выпрямительный, либо импульсный.
  • Третье место облюбовала цифра, характеризующая применимость диода:
  1. Низкочастотные, током ниже 0,3 А.
  2. Низкочастотные, током 0,3 — 10 А.
  3. Не используется.
  4. Импульсные, время восстановления свыше 500 нс.
  5. Импульсные, время восстановления 150 — 500 нс.
  6. То же, время восстановления 30 — 150 нс.
  7. То же, время восстановления 5 — 30 нс.
  8. То же, время восстановления 1 — 5 нс.
  9. Импульсные, время жизни неосновных носителей ниже 1 нс.
  • Номер разработки составлен двумя цифрами, может отсутствовать вовсе. Номинал ниже 10 дополняется слева нулем. Например, 07.
  • Номер группы обозначается буквой, определяет различия свойств, параметров. Буква зачастую является ключевой, может указывать рабочее напряжение, прямой ток, многое другое.

В дополнение к маркировке справочники приводят графики, по которым можно решить задачи выбора рабочей точки радиоэлемента. Могут указываться сведения о технологии производства, материале корпуса, массе. Помогает информация проектировщику аппаратуры, любителям практического смысла не несет.

Нюансы расчета стабилизатора тока

Расчет стабилизатора производится на основании напряжения стабилизации U и тока (среднего) I. К примеру, напряжение входного делителя составляет 25 В, на выходе нужно получить 9 В. Вычисления предусматривают:

  1. Подбор по справочнику стабилитрона. Ориентируются на напряжение стабилизации: Д814В.
  2. Поиск среднего тока I по таблице. Он равен 5 мА.
  3. Вычисление подающего напряжения как разности стабильного напряжения входа и выхода: UR1 = Uвx — Uвых, или 25-9=16 В.
  4. Деление полученного значение по закону Ома на ток стабилизации по формуле R1 = UR1 / Iст, или 16/0,005=3200 Ом, или 3,2 кОм. Номинал элемента будет 3,3 кОм.
  5. Вычисление максимальной мощности по формуле РR1 = UR1 * Iст, или 16х0,005=0,08.

Через резистор проходит ток стабилитрона и выходной, поэтому его мощность должна быть в 2 раза больше (0,16 кВт). На основании таблицы данному номиналу соответствует 0,25 кВт.

Немного подробнее о модуле и принципе его работы

Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.

Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.

Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.

Справочник конденсаторов электролитических, керамических и металлопленочных.

В справочных данных по конденсаторам указаны область

применения, типоразмеры, графики зависимости эквивалентного последовательного

сопротивления от температуры и частоты, зависимости допустимого импульсного тока

от частоты, время наработки, тангенс угла потерь и другие характеристики.

Отечественные операционные усилители. Справочник.

В справочниках по отечественным операционным усилителям указаны типовая схема включения, электрические и

частотные характеристики, допустимая рассеиваемая мощность. На операционники К140УД17,

К140УД18, К140УД20, К140УД22, К140УД23, К140УД24, К140УД25, К140УД26, сдвоенные и счетверенные

ОУ серий К1401УД1 — К1401УД6, микросхемы для звуковой аппаратуры К157 и

широкополосные усилители К574 приведена весьма подробная информация: цоколевка,

импортный аналог, внутренняя схема операционного

усилителя, графики, характеристики, схемы балансировки, включения в качестве

инвертирующего и неинвертирующего усилителя — в общем, не хуже импортных datasheets.

Операционные усилители в справочнике расположены в алфавитном порядке. В таблице

приведено краткое описание, а подробные характеристики содержатся в

pdf файле.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

https://youtube.com/watch?v=djpfEyHTTI8

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

“>

Стабилитроны (типа КС, 2С)

Автотракторные диодыДиоды до 10А СНГВысокоэффективные выпрямительные диодыДиоды до 10А импорт.Мосты диодные DBМосты диодные KBLМосты диодные KBPМосты диодные KBPCСтабилитроны общего назначенияСтабилитроны прецизионныеСтабилитроны мощныеДиоды Зенера имп. 5Вт
На главную

Тип Предельные значения Значения параметров при Т=25°С Тк.мах(Тп.) °С возможная замена
Uст.ном. при Iст.ном. Рмакс. мин макс rст. aст. Iст. мин Iст. макс
В мА мВт B B Ом %/°С мА мА
2С205А 10 5 150 9,12 10,9 22 6 3 13 125 BZX79-C10
2С210А 10 5 125 9 10,5 15 9 3 11 125 BZX79-C10
КС210А 10 5 150 3 14 100 BZX79-C10
2С210Б 10 5 150 9,5 10,5 22 6 3 14 125 BZX79-C10
КС210Б 10 5 150 9,3 10,7 22 6 3 14 100 BZX79-C10
КС210Ж 10,0 4,0 125 9 11 40 9,0 0,5 13 125
КС210Ц 10,0 0,5 125 9,5 10,5 200 8,5 0,1 12,5 125
КС210Ц1 10,0 0,1 20 9,5 10,5 820 8,0 0,05 2 85
2С210Ж 10,0 4,0 150 9,5 10,5 40 9,0 0,5 15 125
2С210К1 10,0 0,5 20 9,5 10,5 220 9,0 0,1 2 125
2С210К 10,0 0,5 20 9,5 10,5 200 9,0 0,5 2 125
2С210Ц 10,0 0,5 125 9,5 10,5 200 8,5 0,1 12,5 125
2С211А 11 5 125 10 12 19 9,5 3 10 125 BZX79-C11
2С211И 11 5 150 10,5 11,5 23 7 3 13 125 BZX79-C11
КС211Ж 11,0 4,0 125 10,4 11,6 40 9,2 0,5 12 85
КС211Ц 11,0 0,5 125 10,4 11,6 200 8,5 0,1 11,2 85
КС211Ц1 11,0 0,1 20 10,4 11,6 820 8,5 0,05 1,8 85
2С211Ж 11,0 4,0 150 10,4 11,6 40 9,2 0,5 14 125
2С211К1 11,0 0,5 20 10,5 11,5 200 9,5 0,1 1,8 125
2С211Х 11,0 0,5 20 10,4 11,6 200 9,5 0,5 1,8 125
2С211Ц 11,0 0,5 125 10,4 11,6 200 8,5 0,1 11,2 125
2С212В 12 5 150 10,9 13,1 24 7,5 3 12 125 BZX79-C11
КС212Ж 12,0 4,0 125 10,8 13,2 40 9,5 0,5 11 125
КС212Ц 12,0 0,5 125 11,4 12,6 200 8,5 0,1 10,6 125
КС212Ц1 12,0 0,1 20 11,4 12,6 820 8,5 0,05 1,7 125
2С212Ж 12,0 4,0 150 11,4 12,6 40 9,5 0,5 13 125
2С212К1 12,0 0,5 20 11,4 12,6 200 9,5 0,1 1,7 125
2С212Ц 12,0 0,5 125 11,4 12,6 200 8,5 0,1 10,6 125
2С212Х 12,0 0,5 20 11,4 12,6 200 9,5 0,5 1,7 125
2С213А 13 5 125 11,5 14 22 9,5 3 9 125 BZX79-C13
КС213А 13 5 150 3 10 125 BZX79-C13
2С213Б 13 5 150 11,9 14,2 25 7,5 3 10 125 BZX79-C13
КС213Б 13 5 150 12,1 13,9 25 8 3 10 125 BZX79-C13
КС213Ж 13,0 4,0 125 12,3 13,7 40 9,5 0,5 10 125
2С213Ж 13,0 4,0 150 12,3 13,7 40 9,5 0,5 12 125
КС215Ж 15,0 2,0 125 13,5 16,5 70 10,0 0,5 8,3 125
2С215Ж 15,0 2,0 150 14,2 15,8 70 10,0 0,5 10 125
КС216Ж 16,0 2,0 125 15,2 16,8 70 10,0 0,5 7,8 125
2С216Ж 16,0 2,0 150 15,2 17 70 10,0 0,5 9,4 125
КС218Ж 18,0 2,0 125 16,2 19,8 70 10,0 0,5 6,9 125
2С218Ж 18,0 2,0 150 17 19 70 10,0 0,5 8,3 125
КС220Ж 20,0 2,0 125 19 21 70 10,0 0,5 6,2 125
2С220Ж 20,0 2,0 150 19 21 70 10,0 0,5 7,5 125
КС222Ж 22,0 2,0 125 19,8 24,2 70 10,0 0,5 5,7 125
2С222Ж 22,0 2,0 150 20,9 23,1 70 10,0 0,5 6,8 125
КС224Ж 24,0 2,0 125 22,8 25,2 70 10,0 0,5 5,2 125
2С224Ж 24,0 2,0 150 22,8 25,2 70 10,0 0,5 6,3 125
2С291А 91,0 1,0 250 86 96 700 11,0 0,5 2,7 125
2С439А 3,9 51 1000 3,51 4,29 12 -10 3 212 125 BZV85-C3V9
КС439А 3,9 51 1000 3,51 4,29 25 -10 3 212 125 BZV85-C3V9
2С447А 4,7 43 1000 4,23 5,17 10 -8…3 3 190 125 BZV85-C4V7
КС447А 4,7 43 1000 4,23 5,17 18 -8…3 3 190 125 BZV85-C4V7
2С456А 5,6 36 1000 5,04 6,16 7 5 3 167 125 BZV85-C5V6
КС456А 5,6 36 1000 5,04 6,16 7 5 3 167 125 BZV85-C5V6
2С468А 6,8 29 1000 6,12 7,48 5 6,5 3 142 125 BZV85-C6V8
КС468А 6,8 30 1000 6,12 7,48 5 6,5 3 119 125 BZV85-C6V8
2С482А 8,2 5 1000 7,4 9 25 8 1 96 125 BZV85-C8V2
КС482А 8,2 5 1000 7,4 9 25 8 1 96 125 BZV85-C8V2
КС509А 15 15 1300 13,8 15,6 15 9 0,5 42 85 BZV85-C15
КС509Б 18 15 1300 18,6 19,1 20 9 0,5 35 85 BZV85-C18
КС509В 20 10 1300 18,8 21,2 24 9 0,5 31 85 BZV85-C20
2С510А 10 5 1000 9 11 25 10 1 79 125 BZV85-C10
КС510А 10 5 1000 9 11 25 10 1 79 125 BZV85-C10
2С512А 12 5 1000 10,8 13,2 25 10 1 67 125 BZV85-C12
КС512А 12 5 1000 10,8 13,2 25 10 1 67 125 BZV85-C12
2С515А 15 5 1000 13,5 16,5 25 10 1 53 125 BZV85-C15
КС515А 15 5 1000 13,5 16,5 25 10 1 53 125 BZV85-C15
2С516А 10 5 340 9 10,5 12 9 3 32 125 BZX79-C10
2С516Б 11 5 340 10 12 15 9,5 3 29 125 BZX79-C11
2С516В 13 5 340 11,5 14 18 9,5 3 24 125 BZX79-C13
2С518А 18 5 1000 16,2 19,8 25 10 1 45 125 BZV85-C18
КС518А 18 5 1000 16,2 19,8 25 10 1 45 125 BZV85-C18
2С522А 22 5 1000 19,8 24,2 25 10 1 37 125 BZV85-C22
КС522А 22 5 1000 19,8 24,2 25 10 1 37 125 BZV85-C22
2С524А 24 5 1000 22,8 25,2 30 10 1 33 125 BZV85-C24
КС524А 24 5 1000 22,8 25,2 30 10 1 33 125 BZV85-C24
2С527А 27 5 1000 24,3 29,7 40 10 1 30 125 BZV85-C27
КС527А 27 5 1000 24,3 29,7 40 10 1 30 125 BZV85-C27
2С530А 30 5 1000 28,5 31,5 45 10 1 27 125 BZV85-C30
КС533А 33 5 640 30 36 40 10 3 17 125 BZV85-C33
2С536А 36 5 1000 34,2 37,8 50 10 1 23 125 BZV85-C36
2С551А 51 1,5 1000 48 54 200 12 1 14,6 125 BZV85-C51
КС551А 51 1,5 1000 48 54 200 12 1 14,6 125 BZV85-C51

Разновидности 12В стабилизаторов

В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:

  • Импульсные – стабилизаторы, состоящие из интегратора (аккумулятора, электролитического конденсатора большой емкости) и ключа (транзистора). Поддержание напряжения в заданном интервале значений происходит благодаря циклическому процессу накопления и быстрой отдачи заряда интегратором при открытом состоянии ключа. По конструктивным особенностям и способу управления такие стабилизаторы подразделяются на ключевые устройства с триггером Шмитта, выравниватели с широтно-импульсной и частотно-импульсной модуляцией.
  • Линейные – стабилизирующие напряжение устройства, в которых в качестве регулирующего устройства применяются подключаемые последовательно стабилитроны или специальные микросхемы.

Как сделать 12В стабилизатор

Простые, но при этом достаточно эффективные, надежные и долговечные стабилизирующие устройства можно сделать самостоятельно, используя при этом простые стабилитроны и специальные небольшие микросхемы типа LM317, LD1084, L7812, КРЕН (КР142ЕН8Б).

Стабилизатор на LM317

Процесс сборки такого стабилизирующего напряжение устройства состоит из следующих этапов:

  1. К среднему выходному контакту микросхемы припаивается 130-ти омное сопротивление.
  2. К входному правому контакту припаивается проводник, подающий нестабилизированное напряжение от источника питания.
  3. Левый регулировочный контакт припаивается ко второй ножке резистора, установленного на выходе микросхемы.

Процесс пайки такого стабилизатора занимает не более 10 минут и с учетом недорогой микросхемы не требует больших капиталовложений. При помощи подобного устройства запитывают светодиодные фонари, ленты.

Микросхема LD1084

Сборка устройства для стабилизации напряжения автомобильной бортовой сети с использованием микросхемы LD1084 производится следующим образом:

  1. К входному контакту микросхемы припаивается проводник с плюсовым напряжением от диодного моста.
  2. К регулировочному контакту припаивается эмиттер биполярного транзистора, базу которого через два резистора номиналом 1 кОм питает ток ближнего и дальнего света фар.
  3. К контакту выхода припаивается два резистора (один – обычный на 120 Ом, а второй – подстроечный, на 4,7кОм) и электролитический конденсатор на 10 мкФ

Для сглаживания пульсации тока после диодного моста устанавливается еще один электролитический конденсатор емкостью 10 мкф.

Стабилизатор на диодах и плате L7812

Простой интегральный выравниватель на диоде Шоттки и двух конденсаторах собирают следующим образом:

  1. К входному контакту микросхемы припаивается: диод типа 1N4007, анод которого при помощи провода соединяется с плюсом источника питания, плюсовая обкладка мощного 16-ти вольтного электролитического конденсатора емкостью 330 мкФ.
  2. К правому выходному контакту припаивается нагрузка и ножка плюсовой обкладки 16-ти вольтного электролитического конденсатора на 100 мкФ.
  3. К среднему регулировочному контакту припаивается минус, идущий от батареи, и провод от минусовых обкладок конденсаторов.

От такого простого устройства можно запитывать мощные ленты из светодиодов и магнитолу.

Самый простой стабилизатор — плата КРЕН

Схема стабилизатор напряжения на 12 вольт на основе платы крен (КР142ЕН8Б) включает в себя следующие компоненты:

  • Припаянный к входному контакту выпрямляющий диод типа 1N4007.
  • Микросхему КР142ЕН8Б либо KIA7812A.
  • Два провода, припаянные к выходному и регулировочному контакту микросхемы и соединенные с нагрузкой и минусом источника питания.

https://www.youtube.com/embed/2w1t%20″>

Стабилизатор напряжения на транзисторах

Стабилизатор на одном стабилитроне

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы. Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – полупроводниковый прибор обладающий свойством стабилизации напряжения. В отличии от обычного диода работает в обратной полярности (на катод подается плюс), в режиме лавинного пробоя. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Конденсатор нужен для сглаживания пульсаций по напряжению, называется он фильтрующим. Резистор нужен для сглаживания пульсаций по току и называется он гасящим. Стабилитрон стабилизирует напряжение на нагрузке. Для нормальной работы данной схемы напряжение питания должно быть больше 40…50 %. Стабилитрон следует подобрать под нужное нам напряжение и ток.

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

Принцип работы стабилизатора на одном транзисторе

Цепочка из R1 и VT1 нам уже знакома из предыдущей схемы, это простейший стабилизатор, он задает стабилизированное напряжение на базе транзистора VT2. Транзистор в свою очередь выполняет функцию усилителя тока и является управляющим элементом в этой схеме. Например, при повышении входного напряжения, выходное напряжение будет стремится к возрастанию. Это приводит к понижению напряжения на эмиттерном переходе транзистора VT2, что приводит к его закрытию. При этом падение напряжения на участке эмиттер – коллектор возрастает на столько, что напряжение на стабилитроне уменьшается до исходного уровня. При понижении напряжения стабилизатор реагирует в обратном порядке.

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

Nero 9.4.26.0 + Nero BackItUp & Burn 1.2.17b + Nero Move it 1.5.10.0 + Nero MediaHome 4.4.26.3 + Templates + Nero In

Год выпуска: 2009Жанр: Запись дисковРазработчик: Nero AGСайт разработчика: http://www.nero.com/Язык интерфейса: Мультиязычный (русский присутствует)Платформа: Windows XP, Vista, 7Описание: Nero 9 — это набор программного обеспечения цифрового мультимедиа и домашнего центра развлечений следующего поколения, которое пользуется наибольшим доверием в мире. Его характеризует передовая функциональность, благодаря которой наслаждаться цифровым мультимедиа так просто. Этот простой в использовании, но мощный набор мультимедиа дает вам свободу создавать, считывать, копировать, записывать, редактир …

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.

https://youtube.com/watch?v=G9E_O5rCFbg

Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов, которые регулируют и контролируют течение электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, потому что от этого параметра зависит стабильная и долгая работа цепи.

Для стабилизации входного напряжения на схемы был разработан специальный модуль, который является буквально важнейшей частью многих приборов. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому имеется различная маркировка диодов на корпусе, что помогает определить и подобрать нужный вариант.