Предисловие
Радиосигнал, однажды сгенерированный, уносится в глубь Вселенной со скоростью света… Эта фраза, прочитанная в журнале «Юный техник» в далеком детстве произвела на меня очень сильное впечатление и уже тогда я твердо решил, что обязательно пошлю свой сигнал нашим «братьям по разуму», чего бы мне это не стоило. Но путь, от желания до воплощения мечты долог и непредсказуем…
Когда я только начинал заниматься радиоделом, мне очень хотелось построить портативную радиостанцию. В то время я думал, что она состоит из динамика, антенны и батарейки. Стоит только соединить их в правильном порядке и можно будет разговаривать с друзьями где-бы они не находились… Я изрисовал не одну тетрадку возможными схемами, добавлял всевозможные лампочки, катушки и проводки. Сегодня эти воспоминания вызывают у меня лишь улыбку, но тогда мне казалось, что еще чуть-чуть и чудо-устройство будет у меня в руках…
Я помню свой первый радиопередатчик. В 7 классе я ходил в кружок спортивной радиопеленгации (т.н. охоты на лис). В один из прекрасных весенних дней наша последняя «лиса» — приказала долго жить. Руководитель кружка, недолго думая, вручил мне её со словами — «… ну, ты там её почини…». Я наверное был страшно горд и счастлив, что мне доверили столь почетную миссию, но мои знания электроники на тот момент не дотягивали до «кандидатского минимума». Я умел отличать транзистор от диода и приблизительно представлял как они работают по отдельности, но как они работают вместе — для меня это было загадкой. Придя домой, я с благоговейным трепетом вскрыл небольшую металлическую коробочку. Внутри неё оказалась плата, состоящая из мультивибратора и генератора РЧ на транзисторе П416. Для меня это была вершина схемотехники. Самой загадочной деталью в данном устройстве была катушка задающего генератора (3,5МГц.), намотанная на броневом сердечнике. Детское любопытство пересилило здравый смысл и острая металлическая отвертка впилась в броневой кожух катушки. «Хрясь» — раздался хруст и кусок броневого корпуса катушки, со стуком упал на пол. Пока он падал, мое воображение уже нарисовало картину моего расстрела руководителем нашего кружка…
У этой истории был счастливый конец, правда случился он через месяц. «Лису» я все-таки починил, хотя точнее сказать — сделал её заново. Плата радиомаяка, сделанная из фольгированного гетинакса, не выдержала пыток моим 100 ваттным паяльником, дорожки отслоились от постоянной перепайки деталей… Пришлось плату делать заново. Спасибо моему папе, что принес (достал где-то с большим трудом) фольгированный гетинакс, а маме — за дорогой французский красный лак для ногтей, который я использовал для рисования платы. Новый броневой сердечник мне достать не удалось, но зато удалось аккуратно склеить старый клеем БФ… Отремонтированный радиомаяк радостно послал в эфир свое слабое «ПИ-ПИ-ПИ», но для меня это было сравни запуску первого искусственного спутника Земли, возвестившего человечеству о начале космической эры таким-же прерывистым сигналом на частоте 20 и 40 МГц. Вот такая история…
Генератор на 120 Гц
На рисунке 4 показана схема генератора частоты 120 Гц. Частота стабилизирована кварцевым резонатором Q1 на 32768 Гц, с его выхода внутри микросхемы D1 импульсы поступают на двоичный счетчик. Коэффициент деления частоты задан диодами VD1-VD2 и резистором R1, которые обнуляют счетчик каждый раз, когда его состояние достигает 272. При этом, 32768 / 272 = 120,470588.
Это не совсем 120 Гц, но близко. К тому же, подбором емкостей конденсаторов С1 и С2 можно немного изменить частоту кварцевого генератора и получить результат более близкий к 120 Гц.
Рис. 4. Принципиальная схема генератора сигнала частотой 120 Гц.
Напряжение источника питания может быть от 3 до 15V, в зависимости от напряжения питания схемы, вернее, от необходимой величины логического уровня. Выходные импульсы во всех схемах несимметричные, это нужно учитывать при конкретном их применении.
Автоколебательные транзисторные приборы
Генератор на транзисторе разделяют на несколько видов:
- по частотному диапазону выдаваемого сигнала;
- по типу выдаваемого сигнала;
- по алгоритму действия.
Частотный диапазон принято подразделять на следующие группы:
- 30 Гц-300 кГц – низкий диапазон, обозначается нч;
- 300 кГц-3 МГц – средний диапазон, обозначается сч;
- 3-300 МГц – высокий диапазон, обозначается вч;
- более 300 МГц – сверхвысокий диапазон, обозначается свч.
Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.
Следующее разделение – по виду выдаваемого сигнала:
- синусоидальный – происходит выдача сигнала по синусоиде;
- функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
- генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.
Транзисторные усилители различаются по алгоритму действия:
RC – основная область применения – низкий диапазон и звуковые частоты;
LC – основная область применения – высокие частоты;
Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.
Деление частот
Малогабаритный прибор для обнаружения неисправностей в ТВ
Малогабаритный прибор для обнаружения неисправностей в телевизорах, радиоприемниках и другой бытовой радиоаппаратуре посредством прослушивания звука в динамике проверяемого устройства, наблюдения изображения на экране телевизора или подключения на выход проверяемого устройства другого индикатора (вольтметр, головные телефоны, осциллограф и т. п.).
Прибор позволяет проверять в телевизорах: сквозной канал, канал изображения, канал звука, цепи синхронизации, линейность кадровой развертки; в радиоприемниках: сквозной тракт, канал УПЧ, детектора и УНЧ.
Прибор представляет собой генератор сигнала сложной формы. Низкочастотная составляющая сигнала имеет частоту повторения 200— 850 Гц. Высокочастотная составляющая имеет частоту 5—7 МГц. Указанный сигнал позволяет получать 2—20 горизонтальных полос на экране телевизора и звук в динамике.
Рис. 4. Малогабаритный прибор для обнаружения неисправностей в телевизорах.
Напряжение сигнала на выходе прибора регулируется потенциометром. Прибор питается от батареи «Крона-ВЦ». Потребляемый ток не более 3 мА.
Габаритные размеры прибора без гибкого вывода не более 245 X X 35 X 28 мм. Длина гибкого вывода не менее 500 мм. Масса прибора не более 150 г.
Электрическая схема прибора изображена иа рис. 4, а. Генератор с прерывистым возбуждением выполнен на транзисторе Т1 по схеме с общей базой.
Прерывистое возбуждение генератора обеспечивает наличие в цепи эмиттера цепочки R3, С4. Сигнал на эмиттере транзистора 77 складывается из прерывистого высокочастотного напряжения и напряжения заряда и разряда конденсатора С4.
На транзисторе Т2 выполнен эмиттерный повторитель, служащий для повышения стабильности работы генератора и уменьшения входного сопротивления прибора. Регулировка выходного уровня сигнала производится с помощью потенциометра R5.
Корпус прибора выполнен в виде двух разъемных крышек, изготовленных из ударопрочного полистирола (рис. 4,6). Крышки соединяются с помощью винта и наконечника, который также используется для подключения прибора к проверяемому устройству. В корпусе размещается плата прибора и батарея питания «Крона-ВЦ». К шасси проверяемого устройства прибор подключается зажимом типа «крокодил».
Для определения неисправности усилительных трактов схему проверяют покаскадно, начиная с конца проверяемого тракта. Для этого на вход каскада подают сигнал касанием наконечника прибора, при этом отсутствие сигнала на индикаторе (экран телевизора, динамик, вольтметр, осциллограф, головные телефоны и т. д.) будет свидетельствовать о неисправности каскада.
Для определения нелинейности изображения по вертикали необходимо: получить изображение горизонтальных полос; измерить минимальное и максимальное расстояние между двумя соседними полосами; определить нелинейность по вертикали по формуле:
где Н — нелийность, %; Iмакс — максимальное расстояние между полосами; Iмнннм — минимальное расстояние между полосами. Об устойчивости синхронизации изображения судят по устойчивости горизонтальных полос на экране телевизора.
Следует иметь в виду, что прибор рассчитан на подключение к точкам электрических схем, напряжение которых не превышает 250 В относительно корпуса. Под напряжением понимается сумма постоянного и импульсного напряжений, действующих в схеме.
Это очень простой самодельный звуковой генератор для тренировки . Принцип работы конструкции довольно прост: схема устроена так, что при замыкании контакта напряжения, раздается звуковой сигнал.
Двухтактный генератор для трудолюбивых
Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.
Вот он
Что мы здесь видим?
Видим колебательный контур L1 C1, А дальше видим каждой твари по паре: Два транзистора: VT1, VT2 Два конденсатора обратной связи: С2, С3 Два резистора смещения: R1, R2
Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!
Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков
Генератор НЧ радиолюбителя-конструктора
Генератор НЧ является одним из самых необходимых приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов ( измерительных мостов, модуляторов и др. )
Желательно чтобы генератор вырабатывал не только синусоидальное, но и прямоугольное напряжение, логического уровня, скважность и амплитуду которого можно регулировать.Принципиальная схема генератора показана на Рис.1. Схема состоит из низкочастотного синусоидального генератора на операционном усилителе А1 и формирователя прямоугольных импульсов на микросхеме D1
Схема синусоидального генератора традиционная. Операционный усилитель, при помощи положительной обратной связи ( С1-С3, R3, R4, R5, C4-C6 ) выполненной по схеме моста Винна, приведён в режим генерации. Избыточная глубина положительной обратной связи, приводящая к искажению выходного синусоидального сигнала, компенсируется отрицательной ОС R1-R2. Причём R1 подстроечный, чтобы с его помощью можно было установить величину ОС такой, при которой на выходе операционного усилителя неискажённый синусоидальный сигнал наибольшей амплитуды. Лампа накаливания включена на выходе ОУ в его цепи обратной связи. Вместе с резистором R16 лампа образует делитель напряжения, коэффициент деления которого зависит от протекающего через него тока ( лампа Н1 выполняет функции терморезистора, увеличивая своё сопротивление от нагрева, вызванного протекающим током ). Частота устанавливается двумя органами управления, – переключателем S1 выбирают один из трёх поддиапазонов «20-200 Гц», «200-2000 Гц» и «2000-20000 Гц». Реально диапазоны немного шире и частично перекрывают друг друга. Плавная настройка частоты производится сдвоенным переменным резистором R5. Желательно чтобы резистор был с линейным законом изменения сопротивления. Сопротивления и законы изменения составных частей R5 должны быть строго одинаковыми, поэтому применение самодельных сдвоенных резисторов ( сделанных из двух одиночных ) недопустимо. От точности равенства сопротивлений R5 сильно зависит коэффициент нелинейных искажений синусоидального сигнала. На оси переменного резистора закреплена ручка со стрелкой и простая шкала для установки частоты. Для точной установки частоты используют цифровой частотомер. Выходное напряжение плавно регулируют переменным резистором R6. С этого резистора поступает НЧ напряжение на милливольтметр, чтобы можно было установить необходимое выходное напряжение. Понизить установленное значение в 10 и 100 раз можно при помощи аттенюатора на резисторах R12-R14. Максимальное выходное напряжение НЧ генератора 1,0V. Для формирования импульсов служит ключ на транзисторе VT2 и три логических элемента на микросхеме D1. Выходной уровень КМОП логики. Транзистор VT2 включён по схеме ключа. Это значит, что при достижении на эго базе напряжения определённого уровня он лавинообразно открывается. На базу транзистора переменное напряжение с выхода генератора подаётся через делитель R9-R10. При помощи R9 можно установить величину минимального напряжения, при котором открывается VT2. Благодаря диоду VD1, который создаёт на эмиттере транзистора небольшое отрицательное напряжение смещения, этот порог можно устанавливать от 0,1 до 1V. То есть, до максимального значения выходного напряжения генератора. В зависимости от того, как установлен этот порок, транзистор VT2 будет открываться и закрываться на определённых участках положительной полуволны низкочастотного напряжения. И от этого будет зависеть ширина импульсов, возникающих на коллекторе транзистора. Окончательно прямоугольную форму импульсам предают элементы микросхемы D1. С гнёзд Х4 и Х5 можно снимать противофазные импульсы. Регулируют амплитуду выходных прямоугольных импульсов изменяя напряжение питания микросхемы D1 в пределах от 9,5 до 3,5V. Регулятор напряжения выполнен на транзисторе VT1. Выключают генератор тумблером на два положения S2, отключающим генератор от источника двуполярного напряжения ±10V.
Источник
www.newcom.cv.ua — Генератор ВЧ (2-160 Мгц)
Подробности Опубликовано 01.01.2013 11:59 Генератор ВЧ работает в диапазоне частот от 2 Мгц до 160 Мгц. Предназначен для проведения работ по настройки высокочастотной радиоаппаратуры, в том числе приемников, передатчиков, трансиверов, радиомикрофонов, устройств дистанционного радиоуправления и т.д.
Для более точного задания частоты, основной диапазон частот разбит на шесть поддиапазонов — четыре в диапазоне КВ и два в диапазоне УКВ.
Уровень выходного напряжения регулируется ступенчато с помощью антенюатора в пределах 1 mV, 10mV, 100 mV и 1 V.
Схема генератора ВЧ очень простая в повторении и состоит из трех основных модулей :
1. Высокочастотного автогенератора собранный по схеме индуктивной трехточки на индуктивностях и транзисторе VT1 KT345. Параметры индуктивностей L1- L6, для поддиапазонов указаны в таблице.
Номер катушки | Поддиапазон Мгц | Индуктивность мкГн | Диаметр провода | Число витков | Способ намотки |
L1 | 2-5 | 106 | 0,2 | 90 | Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником.
Отвод — от 30 витка. |
L2 | 5-10 | 17 | 0,3 | 50 | Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником. Отвод — от 17 витка. |
L3 | 10-20 | 4,3 | 0,4 | 30 | Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником. Отвод — от 10 витка. |
L4 | 20-50 | 1,2 | 0,6 | 15 | Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником. Отвод — от 50 витка. |
L5 | 50-90 | 0,18 | 0,8 | 6 | Шаг 1,3 мм.
Рядовая. Диаметр каркаса 8 мм без ферритового сердечника. Отвод — от 2 витка. |
L6 | 90-160 | 0,055 | 1,0 | 2 | Шаг 2,5 мм. Рядовая. Диаметр каркаса 8 мм без ферритового сердечника. Отвод — от 1 витка. |
Конденсатор СЗ предназначен для грубой настройки , С4 — для точной. Калибровать автогенератор удобнее с помощью цифрового частотомера. Значения частоты в Мгц-ах наносятся на шкале С3 для каждого поддиапазона.
2. Усилитель ВЧ, выполненного на транзисторах VT2 и VT3 КТ361.
3. Модулятор — построенный на базе RC генератора на VT4 КТ315 с частотой колебаний в районе 1 кГц. С помощью выключателя SB2 он может быть при желании отключен.
Питание генератора ВЧ — стабилизированное 12 В.
Как выглядят низкочастотные генераторы сигналов?
Стандартные низкочастотные генераторы сигналов синусоидальной формы представлены в виде небольшого короба, на передней панели имеется экран. С его помощью производится контроль колебаний и регулировки. В верхней части экрана имеется текстовое поле – это своеобразное меню, в котором присутствуют разные функции. Управление может производиться кнопками и переменными резисторами. На экране указывается вся информация, необходимая при работе.
Амплитуда и смещение сигнала регулируются при помощи кнопок. Новейшие образцы приборов оснащаются выходами, посредством которых можно произвести запись всех результатов на флеш-накопитель. Для изменения частоты дискретизации в генераторах синусоидального сигнала применяются специальные регуляторы. Благодаря им пользователь может очень быстро осуществить синхронизацию. Обычно внизу, под экраном, располагается кнопка включения, а рядом с ней выходы генератора.
Самодельные приборы
Можно сделать низкочастотные генераторы сигналов своими руками из подручных средств. Основная часть любого генератора – это селектор (англ. select – выбор). В любой конструкции он рассчитан на несколько каналов. В стандартных конструкциях применяется не более двух микросхем. Этого для реализации простейших приборов оказывается достаточно. Идеально подойдут для изготовления генераторов микросхемы из серии КН148. Что касается преобразователей, то они используются только аналоговые.
В некоторых случаях допускается использовать персональный компьютер в качестве генератора сигналов. Своими руками можно сделать небольшой переходник – он устанавливается на выходе звуковой карты. Сигнал снимается с выхода и используется для тестирования аппаратуры. На ПК устанавливается программа, которая будет управлять звуковой картой. Недостаток такой конструкции – слишком узкий диапазон частот, поэтому его нельзя использовать при тестировании некоторых приборов.
Генераторы синусоидального сигнала
Синус – это наиболее распространенная форма низкочастотного сигнала генераторов. Он необходим для тестирования большей части аппаратуры. В конструкции применяются самые простые микросхемы. Они вырабатывают сигнал, который преобразовывается операционным усилителем. Чтобы производить регулировку сигналов, необходимо в схему включить переменные или постоянные резисторы. От типа используемых сопротивлений зависит, ступенчато или плавно будет осуществляться регулировка.
Генераторы синусоидального сигнала широко применяются для настройки не только радиоаппаратуры, но и высокочастотной техники – инверторов, блоков питания, преобразователей частоты для асинхронных двигателей и т. д. Эта техника позволяет производить преобразование исходного синуса бытовой сети (частота 50 Гц). Причем частота увеличивается в десятки раз – до 100 МГц. Это необходимо для нормальной работы импульсного трансформатора.
Низкочастотные генераторы сигналов
Такие конструкции применяются для настройки и тестирования аудиоаппаратуры
Если обратить внимание на схему простейшего низкочастотного генератора сигналов, то можно увидеть, что в нем устанавливаются переменные резисторы – с их помощью производится корректировка формы и величины сигнала. Чтобы осуществить изменение величины импульса, можно использовать модулятор серии КК202
Сигнал в этом случае должен генерироваться через конденсаторы.
Низкочастотный генератор сигналов используется для настройки любой аудио аппаратуры – проигрывателей, усилителей звуковой частоты и т. д. В качестве такого генератора можно использовать персональный компьютер (даже старый ноутбук подойдет). Это бюджетный вариант, который не потребует больших затрат, если в наличии имеется старенький компьютер. Достаточно установить последнюю версию драйверов, программу для работы со звуковой картой и сделать переходник для подключения к аппаратуре.
Контроллеры сложных сигналов
В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).
Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.
Источники
- https://supereyes.ru/articles/waveform_generator_article_video/kak_vybrat_generator_signalov/
- https://www.RusElectronic.com/generator-chastoty/
- https://www.equipnet.ru/articles/tech/tech_54361.html
- https://www.RusElectronic.com/generator-zvuka/
- https://www.ixbt.com/live/instruments/generator-signalov-iz-nabora-plyusy-i-minusy.html
- https://zen.yandex.ru/media/id/5c615e3c9e391400ae5f8253/generator-vysokoi-chastoty—vrag-elektroschetchikov-5d6bfa4bf557d000aee28228
- https://free-generator.ru/
- https://habr.com/ru/post/207468/
Запуск устройства
Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».
Первый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора). Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.
ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:
При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.
Т.н. «факел» на конце резонатора.
Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).
https://youtube.com/watch?v=aKonU-bYous
Плазменная дуга между резонаторами ВЧ-генератора на транзисторе MRF284
Основные характеристики:
- Генерируемые частоты: 300 Гц, 1 кГц, 3 кГц.
- Максимальное гармоническое искажение (THD): 0,11% — 1 кГц, 0,23% — 300Гц, 0,05% — 3 кГц
- Ток потребления: 4,5 мА
- Выбор выходного напряжения: 0 — 77,5 мВ, 0 — 0,775 В.
Схема синусоидального генератора достаточно проста и построена на двух транзисторах, которые обеспечивают высокую частоту и амплитудную стабильность. Конструкция генератора не требует никаких элементов стабилизации, таких как лампы, термисторы, или других специальных компонентов для ограничения амплитуды.
Каждая из трех частот (300 Гц, 1 кГц и 3 кГц) устанавливается переключателем S1. Амплитуда выходного сигнала может быть плавно изменена посредством переменного резистора R15 в двух диапазонах, которые устанавливаются переключателем S2. Доступные амплитудные диапазоны: 0 — 77,5 мВ (219,7 мВ от пика до пика) и 0 — 0,775 В (2,191 В от пика до пика).
На следующих рисунках приведена разводка печатной платы и расположение элементов на ней.
Делитель частоты на блокинг-генераторе
Блокинг-генератор, описанный в разд. 4.9, можно использовать в качестве делителя частоты повторения импульсов (рис. 13.1,а). Здесь блокинг-генератор работает согласно описанному в разд. 4.9, т. е. в режиме генерирования релаксационных колебаний. Резистор R3,
включенный последовательно с вторичной обмоткой L3 трансформатора, служит для подачи на базу транзистора синхронизирующих сигналов. Форма колебаний на базе транзистора показана на рис. 13.1,6. Как видно, напряжение на базе периодически нарастает, что приводит к периодическому отпиранию транзистора. Это происходит в то время, когда нарастающий ток коллектора, протекая через обмотку L1 трансформатора, индуцирует в обмотке L3 напряжение прямого смещения транзистора. Однако при отпертом транзисторе конденсатор Ci заряжается с отрицательной полярностью на базовом выводе транзистора, вследствие чего прямое смещение на базе уменьшается. В результате этого изображающая точка транзистора переходит в активную область характеристик транзистора, в которой уменьшающееся базовое напряжение приводит к уменьшению тока коллектора. Обусловленное этим исчезающее магнитное поле в трансформаторе LjL3 наводит в обмотке L3 напряжение, запирающее транзистор. Далее конденсатор С1, зарядившийся за время отпертого состояния транзистора, начнет разряжаться через резисторыRi иRz, и, когда напряжение на нем достигнет уровня открывания транзистора, процесс повторится.
Во время действия положительных синхронизирующих импульсов на резистор Rз на базовом напряжении возникают положительные всплески напряжения, которые синхронизируют работу блокинг-генератора. Это происходит потому, что синхронизирующие импульсы переводят транзистор в открытое состояние и таким образом осуществляется управление частотой колебаний блокинг-генератора. Если частота синхронизирующих сигналов в два раза выше частоты автоколебаний блокинг-генератора то синхронизация все-таки будет иметь место, так как входные импульсы (через один) не достигают уровня открывания транзистора и не оказывают влияния на состояние тран зистора (рис. 13.1,6). Таким образом, блокинг-генератор в этом случае будет работать в качестве делителя частоты повторения импульсов.
Выходной сигнал снимается с обмотки трансформатора L2.
Рис. 13.1. Схема делителя частоты на блокинг-генераторе (а)
и форма колебаний на базе транзистора(б). Tweet Нравится
- Предыдущая запись: Схема подстройки с двумя варакторами
- Следующая запись: Делитель частоты накопительного типа
Блочная пересылка (0)
ТЕХНОЛОГИЧЕСКИЕ СОВЕТЫ ПРИ ИЗГОТОВЛЕНИИ И ОРИЕНТИРОВАНИИ ТЕЛЕВИЗИОННОЙ АНТЕННЫ (0)
АКТИВНЫЕ ЩУПЫ С МАЛОЙ ВХОДНОЙ ЕМКОСТЬЮ (0)
АВТОМОБИЛЬНЫЙ ТЕСТЕР (0)
НА БАЗЕ ТЕЛЕФОННЫХ АППАРАТОВ (0)
Демонстрационный АВОМЕТР (0)
УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ В ЭЛЕКТРОННЫХ РЕЛЕ УКАЗАТЕЛЕЙ ПОВОРОТА АВТОМОБИЛЕЙ (0)
Замена переменного резистора постоянными
Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.
Использование переменного резистора в подобных цепях нежелательно по двум основным причинам:
- ненадежность подвижного контакта
- наличие у многооборотных подстроечных резисторов паразитной индуктивности, которая может отрицательно сказаться на качестве выходного сигнала
Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.
Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.
Как изменить форму сигнала
Для того, чтобы получить некоторые нестандартные сигналы, типа пилы или прямоугольных сигналов с различной скважностью, нам придется задействовать
вот эту кнопочку и крутилку
Пару слов о скважности. Это параметр применяется к прямоугольной форме сигналов
где
S – скважность
T – период импульса, с
t – длительность импульса, с
Величина D (Duty), обратная величине S, называется коэффициентом заполнения
Иллюстрация сигналов с различным коэффициентом заполнения
На экране осциллографа это может выглядеть вот так
Можем также из треугольного сигнала получить пилообразный сигнал
Иногда требуется добавить постоянную составляющую в сигнал. Для этого используем вот эту кнопочку и крутилку.
Смысл этой операции заключается в том, что к переменному току мы добавляем постоянный ток. Если объяснить графически, то это будет выглядеть вот так.
Как вы видите, эта функция без проблем работает в этом генераторе частоты
А также мы без проблем можем замерить этим генератором частот какую-либо частоту, например, с другого генератора. Выставили 15 КГц, он нам тоже показал 15 КГц. Все работает как надо!
Низкочастотные генераторы
Такие конструкции применяются для настройки и тестирования аудиоаппаратуры
Если обратить внимание на схему простейшего низкочастотного генератора сигналов, то можно увидеть, что в нем устанавливаются переменные резисторы – с их помощью производится корректировка формы и величины сигнала. Чтобы осуществить изменение величины импульса, можно использовать модулятор серии КК202
Сигнал в этом случае должен генерироваться через конденсаторы.
Низкочастотный генератор сигналов используется для настройки любой аудиоаппаратуры – проигрывателей, усилителей звуковой частоты и т. д. В качестве такого генератора можно использовать персональный компьютер (даже старый ноутбук подойдет). Это бюджетный вариант, который не потребует больших затрат, если в наличии имеется старенький компьютер. Достаточно установить последнюю версию драйверов, программу для работы со звуковой картой и сделать переходник для подключения к аппаратуре.
Генераторы синусоидального сигнала
Синус – это наиболее распространенная форма сигнала генераторов. Он необходим для тестирования большей части аппаратуры. В конструкции применяются самые простые микросхемы. Они вырабатывают сигнал, который преобразовывается операционным усилителем. Чтобы производить регулировку сигналов, необходимо в схему включить переменные или постоянные резисторы. От типа используемых сопротивлений зависит, ступенчато или плавно будет осуществляться регулировка.
Генераторы синусоидального сигнала широко применяются для настройки не только радиоаппаратуры, но и высокочастотной техники – инверторов, блоков питания, преобразователей частоты для асинхронных двигателей и т. д. Эта техника позволяет производить преобразование исходного синуса бытовой сети (частота 50 Гц). Причем частота увеличивается в десятки раз – до 100 МГц. Это необходимо для нормальной работы импульсного трансформатора.
Функциональный транзисторный генератор
Стабилизатор напряжения на транзисторе
Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).
Различают три основных вида импульсов:
- прямоугольные;
- треугольные;
- пилообразные.
Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов
Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц
Высокочастотные колебания здесь организовать невозможно.
Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.
Генераторы сложных сигналов
DDS-генератор сигналов можно назвать конструкцией, которая позволяет получить импульсы сложной формы. В таких конструкциях применяются исключительно многоканальные типы селекторов. Вырабатываемый сигнал обязательно усиливается, а для смены режима работы применяются регуляторы.
Суммарное время нарастания сигнала составляет не больше 40 нс. Чтобы уменьшить время, используются конденсаторы емкостью не больше 15 пФ. Сопротивление выхода устройства составляет около 50 Ом (стандартное значение). При работе с частотой 40 кГц искажение не превышает 1 %. Широко используются такие конструкции генераторов для тестирования радиоприемников.