Как проверить бп компьютера на работоспособность

Как проверить блок питания

Если у компьютера появился один из симптомов, перечисленных выше, не следует сразу грешить на блок питания. Неисправность может возникать и по другим причинам. Чтобы точно убедиться в наличии проблем с питающим компонентом системы, необходимо провести диагностические работы. Имеется 3 метода, как проверить блок питания компьютера самостоятельно.

Шаг 1: Проверка передачи напряжения блоком питания

Чтобы убедиться в том, что блок питания включается, необходимо выполнить следующую проверку:

Снимите боковую крышку компьютера, чтобы получить доступ к внутренним компонентам.
Полностью отключите компьютер от сети – рекомендуем не только вытащить питающий кабель из розетки, но и нажать кнопку отключения подачи энергии на блоке питания, выставив ее в положение off (0).

Отключите все компоненты компьютера от блока питания – материнскую плату, жесткие диски, видеокарту и другие.
Возьмите канцелярскую скрепку, которая сможет выступить перемычкой и замкнуть контакты. Ее необходимо изогнуть в U-образную форму.
Далее найдите максимально большой жгут проводов с разъемом на 20 или 24 контакта, который идет от блока питания. Данный контакт при обычной работе компьютера подключается к материнской плате, и определить его несложно.

На разъеме определите два контакта, замыкание которых является для блока питанием сигналом подключения к материнской плате. Эти контакты очень просто найти. Они могут быть обозначены цифрами 15 и 16 или к ним подходят зеленый и черный провод с блока питания, расположенные рядом

Обратите внимание, что черных проводов на разъеме может быть несколько, тогда как зеленый, чаще всего, один. Вставьте перемычку-скрепку в обнаруженные контакты, чтобы имитировать для блока питания процесс подключения к материнской плате

Убедитесь, что скрепка вставлена плотно, и она прижимает оба контакта

Вставьте перемычку-скрепку в обнаруженные контакты, чтобы имитировать для блока питания процесс подключения к материнской плате. Убедитесь, что скрепка вставлена плотно, и она прижимает оба контакта

Если это так, отпустите скрепку (поскольку через нее может пойти напряжение) и включите блок питания компьютера (не забудьте, что он может быть отключен не только от розетки, но и собственной кнопкой off/on).

Если вы все сделали правильно, и кулер блока питания начал работать при подаче на него напряжения из розетки, значит, проблем с включением у питающего устройства компьютера не возникает.

Необходимо отметить, что данная проверка показывает работоспособность блока питания на включение. Но даже в том случае, если по ее результатам кулер блока питания начал вращаться, это еще не значит, что устройство полностью исправно. Перейдите к следующим шагам проверки блока питания.

Шаг 2:  Как проверить блок питания мультиметром

Если вы убедились, что блок питания получает напряжение от сети и при этом работает, необходимо проверить, отдает ли он требуемое постоянное напряжение. Для этого:

  1. Подключите к блоку питания любое внешнее сопротивление – дисковод, жесткий диск, кулеры;
  2. Далее возьмите мультиметр, выставленный на измерение напряжения, и подключите отрицательный вывод диагностического прибора к черному контакту 20/24-выводного разъема блока питания. Черный контакт при подобном подключении считается заземлением. Положительный щуп мультиметра подключите поочередно к контактам разъема, к которым подходят провода следующих цветов, а также сравните значения с идеальным напряжением:
  • Розовый провод – напряжение 3,3 В;
  • Красный провод – напряжение 5 В;
  • Желтый провод – напряжение 12 В.

В ходе измерения возможны погрешности в ±5%.

Если измеренные значения отличаются от идеальных, можно диагностировать неисправность блока питания и необходимость его замены.

Шаг 3: Как визуально проверить блок питания

При отсутствии мультиметра (или при необходимости дополнительной диагностики) можно визуально проверить блок питание на наличие неисправности. Для этого:

Отсоедините блок питания от корпуса компьютера, открутив 4 (или 6) винтов, на которых он закреплен;
Разберите блок питания, открутив винты, находящиеся на его корпусе;
Визуально осмотрите микросхему блока питания

Обратить внимание необходимо на конденсаторы. Если они вздуты, то их выход из строя мог послужить причиной поломки блока питания. В подобной ситуации (при желании) можно перепаять конденсаторы, заменив их на аналогичные по номиналу

В подобной ситуации (при желании) можно перепаять конденсаторы, заменив их на аналогичные по номиналу.

Когда проблем с конденсаторами не наблюдается, рекомендуется удалить всю пыль из блока питания, смазать вентилятор и собрать устройство обратно, а после попробовать подключить.

Что такое регулятор напряжения 220 В

Сокращенное название рассматриваемого прибора — РН 0–220 В. Самый простой такой аппарат — это диммер для ламп накаливания. Устройство настраивает сетевые параметры напряжения, повышает/понижает степень выходного сигнала на диапазоне, зависимом от значения разности потенциалов на его выходе. Поддерживает заданный вольтаж цепи потребителя.

Аппарат регулирует (плавно или ступенчато) именно саму величину напряжения, вольтаж, от которого также зависит мощность в диапазоне возможностей подключенного агрегата. Работает с нагрузкой реактивной, активной, только надо уточнять, подходит ли конкретная сборка, особенно для последней. А также всегда надо сопоставлять, на какую обслуживаемую мощность (Ватты) рассчитана схема.

РН изменяет согласно настройкам пользователя уровень выходного сигнала из сети 220 В, подаваемый на подключенную к нему нагрузку. Таким образом, устанавливается параметр, подходящий для запитывания конкретного прибора, а чаще для регулировки его работы (снижение/повышение оборотов маломощных электромоторов, яркости света).

Регулятор напряжения применяют:

  • для изменения оборотов небольших моторчиков бытовых устройств (скорости блендера, фена), реже, поскольку не все схемы подходят, — для более мощных двигателей (например, дрели);
  • для других приборов, работу которых можно настраивать. А чаще (и это наиболее корректное и эффективное использование) для уровня освещенности (диммер), громкости звука, нагрева ТЭНов, паяльника,
  • во всех случаях, если на цепи надо создать определенное напряжение, например, 12 В.

Чаще всего бытовой РН 0–220 В применяется для плавного вкл./выкл. приборов.

В заводских моделях обычно также есть микросхема для стабилизации напряжения при его скачках, обеспечивающая работу приборов в любом режиме. Тиристорный регулятор по англоязычным стандартам именуют Voltage Controller. РН снабжают универсальные блоки питания, на которых можно настраивать вольтаж.

Виды, принцип работы, особенности

РН по нашей теме предназначен только для переменного напряжения, то есть для обычной домашней сети 220 В.

Чаще всего собирают на базе таких деталей:

  • тиристоры;
  • симисторы;
  • транзисторы.

В схемах присутствуют также конденсаторы, резисторы постоянные, настроечные. Именно селекторами последних осуществляется регулировка. Сложные сборки могут включать микросхемы.

РН максимально результативные для резистивных (активных, омических) нагрузок, то есть являющихся частью потребляемой мощности подсоединяемого/отключаемого потребителя. Это сопротивление движению тока, например, в виде резистора, на точке, где электричество преобразовывается в тепло.

Резистивная нагрузка — это нагревательные элементы, ТЭНы, лампы накаливания (не «экономки»).

В индуктивной нагрузке ток (там он значительно ниже, чем при резистивной) отстает от напряжения, создается реактивная мощность. Это асинхронные электродвигатели, электромагниты, дроссели, трансформаторы, выпрямители. С ними РН не будут работать или будут, но не эффективно, создавая риск поломки оборудования. Там регуляторы напряжения не всегда целесообразные.

Тиристорный прибор нельзя использовать со светодиодными (экономными) и люминисцентными лампами. Конденсаторные регуляторы не позволяют плавно менять напряжение.

Индукционные регуляторы напряжения серии ИР

Напряжения

И индукционные регуляторы

Фазорегуляторы

Асинхронные двигатели специального назначения

Отечественная промышленность выпускает большое число АД специального назначения, т. е. предназначенных для работы с конкретными типами приводных механизмов в бытовых приборах, в системах автоматики, в металлургической промышленности и т. п. Эти АД, как правило, существенно отличаются от АД общего назначения конструктивным исполнением, техническими данными и характеристиками, которые соответствуют специфическим требованиям того или иного приводного механизма.

Описание и технические данные АД специального назначения помещены во втором томе Справочника в разделах, соответствующих их основному назначению (краново-ме-таллургические двигатели, взрывобезопас-ные, погружные, бытовые и т. п.).

Индукционные регуляторы напряжения и фазорегуляторы (фазовращатели) представляют собой асинхронные машины с заторможенным фазным ротором, в которых с помощью поворотного устройства можно изменять положение ротора относительно статора. Намагничивающий ток соединенной с сетью обмотки создает магнитный поток, который наводит ЭДС во вторичной обмотке. Фаза ЭДС меняется в зависимости от

взаимного положения осей первичной и вторичной обмоток.

В фазорегуляторах на нагрузку подается напряжение от вторичной обмотки, неизменное по амплитуде и меняющееся по фазе в зависимости от угла поворота ротора.

В индукционных регуляторах происходит суммирование первичного и вторичного напряжений, при этом изменение фазы ЭДС вторичной обмотки, происходящее при повороте ротора, вызывает изменение напряжения на нагрузке регулятора (см. § 9.1).

Регуляторы напряжения серии ИР (табл. 9.83, 9.84) предназначены для плавного регулирования напряжения на нагрузке в широких пределах при неизменном напряжении питающей сети.

В условном обозначении регуляторов после наименования серии — букв ИР — следуют двухзначные цифры, определяющие над чертой диаметр сердечника статора (габарит) в сантиметрах и под чертой — длину сердечника статора в сантиметрах; далее следует обозначение климатического исполнения и категории размещения по ГОСТ 15150-69.

Регуляторы имеют вертикальное исполнение. Обмотки статора и ротора выполнены из прямоугольного провода; пазы открытые; в сердечниках имеются вентиляционные аксиальные каналы; лобовые части обмоток прикреплены к бандажным кольцам. В регуляторах ИР 99 и ИР 118 в пазы статора заложены термометры сопротивлений.

Подшипники ротора располагаются в подшипниковых щитах. На нижнем щите находится фланец для крепления регуляторов к фундаментной плите. Ограничение угла поворота ротора достигается упором роговой втулки, насаженной на его вал, в приливы с резиновыми амортизаторами, расположенными на верхнем подшипниковом щите.

Таблица 9.83. Технические данные индукционных регуляторов напряжения ИР климатического исполненияУЗ

Механизм дистанционного управления приводится в движение АД. Вращающий момент от АД передается на вал ротора регулятора через понижающий редуктор и зубчатые (ИР 99 и ИР 118) или червячные (ИР 59, ИР 74) секторы, которые соединены с роговой втулкой предохранительными шпильками. При аварийных режимах шпильки срезаются, предотвращая поломку зубьев привода.

Внутри корпуса размещены конечные выключатели двигателя привода, положением которых устанавливают предельные углы поворота ротора регулятора, необходимые для достижения заданного напряжения на нагрузке.

Технические данные регуляторов ИР

указаны при работе с коэффициентом мощности нагрузки, равным 0,8. При работе с коэффициентом мощности нагрузки, меньшим 0,8, номинальный ток снижается в соответствии с данными, приведенными ниже:

Отношение тока нагрузки

к номинальному току 0,93 0,88 0,85

Продолжение

Коэффициенты мощности нагрузки регуляторов

менее Отношение тока нагрузки

к номинальному току 0,82 0,81 0,8

Таблица 9.84. Технические данные индукционных регуляторов напряжения серии ИР

Дата добавления: 2015-06-27 ; ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Советуем изучить — Ограничения токов короткого замыкания в электрических сетях промышленных предприятий

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.


Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.


Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.


Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Схема регулируемой электронной нагрузки

Схема настолько проста, что практически любой желающий может собрать ее, и думаю, она будет незаменима в мастерской каждого радиолюбителя.

Операционный усилитель LM358 делает так, чтобы падение напряжения на R5 было равно значению напряжения заданного с помощью потенциометров R1 и R2. Потенциометр R2 предназначен для грубой подстройки, а R1 для точной.

Резистор R5 и транзистор VT3 (при необходимости и VT4) необходимо подобрать соответствующими максимальной мощности, которой мы хотим нагрузить наш блок питания.

Подбор транзистора

В принципе подойдет любой N-канальный MOSFET транзистор. От его характеристики будет зависеть рабочее напряжение нашей электронной нагрузки. Параметры, которые должны заинтересовать нас — большой Ik (ток коллектора) и Ptot (рассеиваемая мощность). Ток коллектора — это максимальный ток, который может пустить через себя транзистор, а рассеиваемая мощность — это мощность, которую транзистор может отвести в виде тепла.

В нашем случае транзистор IRF3205 теоретически выдерживает ток до 110А, однако его максимальная мощность рассеивания около 200 Вт. Как нетрудно подсчитать, максимальный ток 20А мы можем задать при напряжении до 10В.

Для того чтобы улучшить эти параметры, в данном случае используем два транзистора, что позволит рассеивать 400 Вт. Плюс ко всему нам будет нужен мощный радиатор с принудительным охлаждением, если мы действительно собираемся выжать максимум.

Блок питания 0…30 В / 3A
Набор для сборки регулируемого блока питания…

Подробнее

Транзисторы BC327 и BC337 — повторители для MOSFET транзисторов, предназначены для обеспечения быстрой перезарядки затвора. Конденсатор С1 предназначен для подавления возбуждений (при тестировании импульсных БП).

Подбор резистора

При нагрузке 20А, резистор R5 должен иметь мощность 40 Вт и хорошо охлажден (20 A * 0,1 Ом = 2 В; 2 В * 20 A = 40 Вт). Лучше использовать резистор в металлическом корпусе с возможностью установки на радиатор. Можно также соединить параллельно несколько резисторов так, чтобы получить соответствующую мощность и сопротивление.

Напряжение питания схемы – нестабилизированное 15В, хотя оно зависит от параметра Vgs (напряжение затвора) нашего транзистора, при котором он полностью откроется. Как правило, не нужно больше 10В. Поскольку при более высоком напряжении стабилизатора DA1 должен быть оснащен радиатором.

Можно использовать транзисторы (VT3 и VT4)  с логическим уровнем управления, то есть такой, который управляется напряжением TTL. Тогда напряжение питания в 7В будет достаточно. На этом заканчивается описание основной части электронной нагрузки.

При желании в схему можно добавить амперметр, но это не обязательно. Тем не менее, дополнив схему амперметром мы освободим свой мультиметр, который будет необходим для настройки. Измерительный блок выполнен на популярной микросхеме ICL7107 и четырех 7-сегментных светодиодных индикаторов по классической схеме.

Настройка

Перед использованием нужно откалибровать показания нашего амперметра. Для этого подключаем электронную нагрузку к блоку питания и в разрыв цепи включаем мультиметр (диапазон 10А). После прогрева схемы, потенциометром R9 устанавливаем такое же показание, как на мультиметре.

Другие области применения устройства

Регулируемая электронная нагрузка подойдет не только для тестирования блоков питания. Устройство также может быть использовано для тестирования батарей, аккумуляторов. С помощью его удобно измерять и рассчитывать емкость за счет стабилизации тока, который всегда будет поддерживаться на заданном уровне.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Возможное расширение функционала

При необходимости использовать электронную нагрузку именно для тестирования фотоэлектрических модулей, можно добавить режим стабилизации напряжения, для чего задействовать свободный усилитель ошибки в микросхеме DA2.

Если недостаточно линейной токовой развертки, нужно добавить еще одно положение переключателя SW1 и внешний вход, на который можно подавать положительный сигнал произвольной формы от функционального генератора. Настройка максимального уровня внешнего сигнала производится, аналогично описанной выше, изменением сопротивления резистора, включенного между новым контактом SW1 и внешним входом.

Максимальное рабочее напряжение можно увеличить изменением количества ламп, включенных последовательно, и применением более высоковольтных элементов в силовой части.

Описание схем

Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:

“Звезда”

Соединение “звездой” предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется “нулем”. При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.

Советуем изучить — Лекция 1.3.2. диэлектрическая проницаемость

Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки – нулевым. Напряжение между линейными проводами называют линейным.

Линейное напряжение больше фазного в 1,73 раза.

Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.

Особенностью схемы является также равенство линейных и фазных токов.

Наиболее распространена 4 проводная схема – соединение “звездой” с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе – включена активная нагрузка, а на другой – емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.

“Треугольник”

Соединение “треугольником” – это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец – с началом третьей, а конец последней – с началом первой.

В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.

Все упомянутые зависимости справедливы только при равномерной нагрузке фаз. При неравномерной нагрузке фаз, их необходимо пересчитывать аналитическими или графическими методами.