Сопротивление проводника и его зависимость от размеров, материалов и температуры

Зависимость от свойств материала

От чего зависит индуктивность

Для стандартизации приняли единицу измерения 1 Ом. Это сопротивление создает столбик из ртути толщиной 1 кв. мм, высотой – 1063 мм. Измерения выполняются при поддержании нулевой температуры.

Чтобы упростить расчеты, применяют удельное значение сопротивления Rуд, которое создают проводники из других материалов (Длина Х Площадь сечения = 1 000 мм х 1 кв. мм).


Удельное сопротивление (проводимость)

На рисунке обозначено Rуд (серебра) = 0,016. Это значит, что метровый проводник с нормированной площадью сечения 1 мм кв. создает электрическое сопротивление 0,016 Ом. Сведения о других материалах можно взять из справочника.

Расчет сопротивлений

Для вычисления величины нагрузочного сопротивления формулу, выведенную из закона Ома, используют, как основную, если известны значения тока и напряжения:

Единицей измерения является Ом.

Для последовательного соединения резисторов общее сопротивление находится путем суммирования отдельных значений:

R = R1 + R2 + R3 + …..

При параллельном соединении используется выражение:

1/R = 1/R1 + 1/R2 + 1/R3 + …

А как найти электрическое сопротивление для провода, учитывая его параметры и материал изготовления? Для этого существует другая формула сопротивления:

R = ρ х l/S, где:

  • l – длина провода,
  • S – размеры его поперечного сечения,
  • ρ – удельное объемное сопротивление материала провода.

Data-lazy-type=»image» data-src=»https://elquanta.ru/wp-content/uploads/2018/03/2-1-600×417.png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-1-768×533..png 792w» sizes=»(max-width: 600px) 100vw, 600px»>

Формула сопротивления

Геометрические размеры провода можно измерить. Но чтобы рассчитать сопротивление по этой формуле, надо знать коэффициент ρ.

Важно!

Значения уд. объемного сопротивления уже рассчитаны для разных материалов и сведены в специальные таблицы.

Значение коэффициента позволяет сравнивать сопротивление разных типов проводников при заданной температуре в соответствии с их физическими свойствами без учета размеров. Это можно проиллюстрировать на примерах.

Пример расчета электросопротивления медного провода, длиной 500 м:

  1. Если размеры сечения провода неизвестны, можно замерить его диаметр штангенциркулем. Допустим, это 1,6 мм;
  2. При расчетах площади сечения используется формула:

Тогда S = 3,14 х (1,6/2)² = 2 мм²;

  1. По таблице нашли значение ρ для меди, равное 0,0172 Ом х м/мм²;
  2. Теперь электросопротивление рассчитываемого проводника будет:

R = ρ х l/S = 0,0172 х 500/2 = 4,3 Ом.

Другой пример

нихромовая проволока сечением 0,1 мм², длиной 1 м:

  1. Показатель ρ для нихрома – 1,1 Ом х м/мм²;
  2. R = ρ х l/S = 1,1 х 1/0,1 = 11 Ом.

На двух примерах наглядно видно, что нихромовая проволока метровой длины и сечением, в 20 раз меньшим, имеет электрическое сопротивление в 2,5 раза больше, чем 500 метров медного провода.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-6-768×381..jpg 960w» sizes=»(max-width: 600px) 100vw, 600px»>

Удельное сопротивление некоторых металлов

Важно!

На сопротивление оказывает влияние температура, с ростом которой оно увеличивается и, наоборот, уменьшается со снижением.

Формула сопротивления

Ток обусловлен движением электронов. Классическая формула, используемая для расчёта его силы была выведена немецким физиком Омом. Он на опыте смог подтвердить зависимость между собой тока, сопротивления и напряжения. В математическом виде связь записывают в виде формулы: I = U /R.

Согласно закону Ома, сопротивление тела электрическому току прямо пропорционально его силе и обратно пропорционально напряжению: R = I / U. Это эмпирическая формула справедлива для любого участка цепи.

Подвижные носители при хаотичном движении ведут себя как молекулы газа, поэтому в первом приближении физики считают носителей зарядов своего рода электронным газом. Как было установлено эмпирически, плотность этого газа и строение кристаллической решётки зависят от рода проводника. Соответственно, проводимость, а значит и сопротивление, определяется также и родом вещества. В свою очередь, физическое тело характеризуется и геометрическими параметрами.

Влияние размеров полупроводника объясняется зависимостью от них поперечного сечения. При его уменьшении поток зарядов становится плотнее, степень взаимодействия между частицами возрастает. Полная формула сопротивления проводника с учётом поперечного сечения выглядит так: R = (p * l) / S. Из неё становится ясно, что проводимость прямо пропорциональна площади сечения и обратно пропорциональна длине проводника.

Удельное электрическое сопротивление для многих веществ было установлено во время исследований. Существуют таблицы, в которые занесены данные, измеренные при температуре 20 градусов Цельсия. Ими часто пользуются при решении различных задач, связанных с электричеством. Вот некоторые из них:

  • олово — 9,9 * 10-8 Ом * мм2/м;
  • медь — 0,01724 Ом * мм2/м;
  • алюминий — 0,0262 Ом * мм 2/м;
  • железо — 0,098 * Ом * мм2/м;
  • золото — 0,023 Ом * мм2/м.

Удельное сопротивление для неоднородного материала можно вычислить по формуле: p = E / J. Где: E и J напряжённость и плотность тока в конкретной точке.

Сопротивление проводника/цепи.

Термин “сопротивление” уже говорит сам за себя

Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:

Сопротивление проводника зависит от нескольких факторов:

  • удельного сопротивления проводника \rho
  • длины проводника l
  • площади поперечного сечения проводника S

Удельное сопротивление – это табличная величина. Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

R = \rho\medspace \frac{l}{S}

Для нашего случая \rho будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:

R =0,0175 \cdot \frac{0.5}{0.2} = 0.04375\medspace Ом

Как вы уже поняли из примера, единицей измерения сопротивления является Ом

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи.

Расчёт сопротивления проводника

Выше были рассмотрены упрощенные методики, которые надо корректировать с учетом реальных условий. Так, существенное влияние на проводимость материалов оказывает температура. В серийных проводниках (медь, алюминий) значение данного параметра увеличивается в пропорции 0,3-0,5% на каждый градус. В составах на основе угля и электролитах наблюдается обратный эффект – уменьшение сопротивления.

Без удерживающих струн и других приспособлений для фокусов обеспечивается настоящая левитация с применением сверхпроводимости

Показанный на рисунке эксперимент можно воспроизвести, понизив температуру металла до «абсолютного нуля» (-273°C). При таком экстремальном охлаждении атомарная решетка фиксируется в стабильном положении.

Это состояние создает идеальные условия для перемещения электронов. Отсутствие препятствий сопровождается минимальными потерями, что объясняет перспективность направления для создания эффективных линий передачи энергии. Пример на рисунке демонстрирует улучшенные эксплуатационные параметры транспортных коммуникаций. В данном случае можно исключить силы трения.

Комбинация трубы с безвоздушным пространством и сверхпроводимости улучшает характеристики перспективных транспортных систем

Понятно, что для улучшения экономических показателей необходимо повысить рабочую температуру при сохранении хорошей проводимости. Однако новейшие научные достижения в соответствующей области позволяют рассчитывать на положительный результат в близком будущем.

Следует подчеркнуть! На практике могут понадобится разные технологии вычислений. Например, материал неизвестен. Сложно идентифицировать его по внешним признакам. Для качественного химического лабораторного анализа, кроме соответствующих навыков, необходимо специальное оснащение.

Однако при необходимости нетрудно вывести удельный показатель:

Rуд = R * S /L.

Геометрические параметры измеряют стандартными инструментами (линейкой, штангенциркулем). По типовой схеме измерений с помощью мультиметра уточняют электрическое сопротивление. Для вычисления Rуд пользуются представленной выше формулой. В справочнике выбирают позицию, соответствующую результату расчета. По такой же методике можно определить иные неизвестные значения, например, длину кабеля в подземной трассе.

В реальных расчетах для повышения точности учитывают реактивные компоненты проводников. Например, индуктивность длинной прямой линии определяют по формуле:

И = (m0/2π) * L *(mc * ln(L/r) +1/4m,

где:

  • m – магнитная проницаемость материала (о – постоянная, с – окружающей среды);
  • r и L – радиус и длина проводника, соответственно.

При повышении частоты приходится учитывать растекание тока в поверхностной зоне и вихревые изменения.

Представленные теоретические знания пригодятся для расчета и создания реостата – прибора с регулируемым сопротивлением. Они нужны для предотвращения электротравм с применением точного расчета защитных цепей и специализированных автоматов (предохранителей).

Цепи переменного тока

Импеданс и допуск

Когда через цепь протекает переменный ток, соотношение между током и напряжением на элементе схемы характеризуется не только соотношением их величин, но и разностью их фаз . Например, в идеальном резисторе в момент, когда напряжение достигает своего максимума, ток также достигает своего максимума (ток и напряжение колеблются синфазно). Но для конденсатора или катушки индуктивности максимальный ток возникает, когда напряжение проходит через ноль и наоборот (ток и напряжение колеблются на 90 ° вне фазы, см. Изображение ниже). Комплексные числа используются для отслеживания фазы и величины тока и напряжения:

ты(т)знак равноре(U⋅еjωт),я(т)знак равноре(я⋅еj(ωт+φ)),Z_знак равноU_я_,Y_знак равноя_U_{\ Displaystyle и (т) = {\ mathfrak {Re}} \ left (U_ {0} \ cdot e ^ {j \ omega t} \ right), \ quad i (t) = {\ mathfrak {Re}} \ left (I_ {0} \ cdot e ^ {j (\ omega t + \ varphi)} \ right), \ quad {\ underline {Z}} = {\ frac {\ underline {U}} {\ underline {I }}}, \ quad {\ underline {Y}} = {\ frac {\ underline {I}} {\ underline {U}}}}

Напряжение (красный) и ток (синий) в зависимости от времени (горизонтальная ось) для конденсатора (вверху) и катушки индуктивности (внизу). Поскольку амплитуда тока и напряжение синусоид одинакова, то абсолютное значение от импеданса равно 1 и для конденсатора и катушки индуктивности (в любой единицы граф с использованием). С другой стороны, разность фаз между током и напряжением для конденсатора составляет -90 °; Таким образом, комплексная фаза из импеданса конденсатора составляет -90 °. Точно так же разность фаз между током и напряжением составляет + 90 ° для индуктора; следовательно, комплексная фаза полного сопротивления катушки индуктивности составляет + 90 °.

куда:

  • т время,
  • u (t) и i (t) — соответственно напряжение и ток как функция времени,
  • U и I указывают амплитуду напряжения соответствующего тока,
  • ω{\ displaystyle \ omega}- угловая частота переменного тока,
  • φ{\ displaystyle \ varphi} угол смещения,
  • U , I , Z и Y — комплексные числа,
  • Z называется импедансом ,
  • Y называется допуском ,
  • Re указывает на настоящую часть ,
  • jзнак равно-1{\ displaystyle j = {\ sqrt {-1}}}это мнимая единица .

Импеданс и проводимость могут быть выражены как комплексные числа, которые можно разбить на действительную и мнимую части:

Z_знак равнор+jИкс,Y_знак равнограмм+jB{\ displaystyle {\ underline {Z}} = R + jX, \ quad {\ underline {Y}} = G + jB}

где R и G — сопротивление и проводимость соответственно, X — реактивное сопротивление , а B — проводимость . Для идеальных резисторов Z и Y уменьшаются до R и G соответственно, но для сетей переменного тока, содержащих конденсаторы и катушки индуктивности , X и B не равны нулю.

Z_знак равно1Y_{\ displaystyle {\ underline {Z}} = 1 / {\ underline {Y}}}для цепей переменного тока, как и для цепей постоянного тока.
рзнак равно1грамм{\ Displaystyle R = 1 / G}

Частотная зависимость

Ключевой особенностью цепей переменного тока является то, что сопротивление и проводимость могут зависеть от частоты, это явление известно как универсальный диэлектрический отклик . Одна из причин, упомянутых выше, — это скин-эффект (и связанный с ним эффект близости ). Другая причина заключается в том, что само сопротивление может зависеть от частоты (см. Модель Друде , глубокие ловушки , резонансная частота , соотношения Крамерса – Кронига и т. Д.)

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению. Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры. С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает. При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники — изоляторами. Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать. При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле. При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация. Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении. В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I

в полупроводнике складывается из электронногоIn и дырочногоIp токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Какие существуют виды

Их немного, одно из которых мы уже разобрали:

  • омическое;
  • активное;
  • индуктивное;
  • ёмкостное.

Формулы расчёта электрического сопротивления для переменного тока

К сожалению, наш друг-физик решил не идти нам навстречу и вывел несколько формул по нахождению всех трёх величин. Электрическое сопротивление обозначается буквой R.

Но перед тем как пойти дальше, совет: всегда придумывайте какие-нибудь ассоциации, чтобы запомнилось на всю жизнь, например:

  1. R (сопротивление). Можете запомнить что R, как рюмка. Нужно сопротивляться, чтобы не выпить ещё одну рюмку.
  2. I (сила тока). Латинская «I», как проводок, по которому идёт ток.
  3. U (напряжение). Эта буква, как дуга. И напряжение разносится с одного конца на другой по дуге.

Ну и, конечно, формула закона Ома для участка цепи.

  1. R=U/I  т.е., чтобы найти сопротивление(рюмку) надо напряжение (дугу) разделить на ток (проводок).
  2. U=IR, хотите найти напряжение (дугу), умножьте проводок на рюмку.
  3. I=U/R чтобы найти чему равен проводок, нужно напряжение разделить на сопротивление.

Ну а теперь главное, для чего мы все здесь собрались: «Зачем нужен этот закон? Что он даёт?»

Также не забывате, если вдруг вас спросят от чего зависит сопротивление — отвечайте: » От напряжения и мощности».

Активного сопротивления

Ну что сказать? Придется запастись терпением и потратить время на все эти законы и определения.

Но к счастью, активное сопротивление, так и осталось большой буквой R. Просто немного поменялась формула и ее предназначение.

Подключим к нашей цепи проводник. Проводником может выступать лампа.

Понятно, что по нему тоже будет проходить ток. Это как танец «волна». Все 5 человек берутся за руки и начинают по очереди создавать колебания. Сопротивление уже известно на всех. Так же и здесь.

Если посмотреть, то можно найти сходство танца «волны» с этой буквой. Так и запомните.

Формула, как рассчитать силу тока:

I=U/Z

Индуктивного сопротивления

Боюсь, что когда вы увидите данную формулу, то она вам точно не понравится. Но нет слова «не хочу», есть слово «надо».

Начнем с обозначения:

  • XL (индуктивное сопротивление). Прямо как размер в одежде. Но почему именно так? L — это цепь переменного тока;
  • f — частота, в Гц;
  • сопротивление с частотой взаимосвязаны, так, если возрастает одно — увеличивается и другое;
  • единица СИ индуктивного сопротивления: = Ом;
  • запомните, что индуктивное сопротивление отличается от омического тем, что у первого нет потери мощности;
  • XL=2π×f×L;
  • формула расчета мощности по напряжению: P = U×I;
  • мощность электрического тока вычисляется в Ватах.

Емкостного

Ёмкостное сопротивление — это проводник, который подключен к цепи. Он не имеет сопротивление, но есть ёмкость. Обозначается это ёмкостное сопротивление буквами Xc.

  • Xc = 1/ωC;
  • ω — циклическая частота;
  • С — ёмкость.

Полного

Как говорилось выше — полное сопротиление что-то на подобии танца «волны». Нужно узнать R (сопротивление) всех.

Чтобы определить полное сопротивление цепи:

R = R1 +R2 (проводников может быть несколько).

Теперь, если у вас спросят как определить общее сопротивление цепи, вы знаете что делать.

1. Калькулятор рассеиваемой мощности и протекающей силы тока в зависимости от сопротивления и приложенного напряжения.

Демо закона Ома в реальном времени.
Для справки
В данном примере вы можете увеличивать напряжение и сопротивление цепи. Данные изменения в реальном времени будут изменять силу тока протекающего в цепи и мощность рассеиваемую на сопротивлении.
Если рассматривать аудио системы — вы должны помнить что усилитель выдает определенное напряжение на определенную нагрузку (сопротивление). Соотношение двух этих величин определяет мощность.
Усилитель может выдать ограниченную величину напряжения в зависимости от внутреннего блока питания и источника тока. Так же точно ограничена и мощность которую может подать усилитель на определенную нагрузку (к примеру 4 Ома).
Для того что бы получить больше мощности, вы можете подключить к усилителю нагрузку с меньшим сопротивлением (к примеру 2 Ома). Учтите что при использовании нагрузки с меньшим сопротивлением — скажем в два раза (было 4 Ома, стало 2 Ома) — мощность тоже возрастет в два раза.(при условии что данную мощность может обеспечить внутренний блок питания и источник тока).
Если мы возьмем для примера моно усилитель мощностью 100 Ватт на нагрузку 4 Ома, зная что он может выдать напряжение не более 20 Вольт на нагрузку.
Если вы поставите на нашем калькуляторе бегунки
Напряжение 20 Вольт
Сопротивление 4 Ома
Вы получите

Мощность 100 Ватт  
 
Если вы сдвинете бегунок сопротивления на величину 2 Ома, вы увидите как мощность удвоится и составит 200 Ватт.
В общем примере источником тока является аккумуляторная батарея (а не усилитель звука) но зависимости силы тока, напряжения, сопротивления и сопротивления одинаковы во всех цепях.
 

Зависимость от геометрии

Индуктивность проводника

Из раздела с описанием удельных параметров понятно, что электрическое сопротивление проводника зависит от длины. Если взять образец из серебра (площадь нормированного сечения 1 кв. мм) при длине 6,8 м, несложно вычислить значение R = 6,8 * 0,016 = 0,1088 Ом.

Аналогичным образом решают иные практические задачи. Чтобы создать провод с электросопротивлением 100 Ом понадобится серебряная жила длиной 6 250 м = 100/ 0,016. Если применить металлический проводник из железа, длина составит 833 м = 100/0,12.

Следующий решающий фактор – площадь поперечного сечения. Для наглядности можно использовать пример с перекачиванием жидкости из основного бака в две разные емкости. Создать необходимый напор несложно поднятием главного резервуара на небольшую высоту. Применив трубки с разным диаметром протоков, можно увидеть разницу в скорости заполнения контрольных объемов. Если показания будут измеряться при желании несложно составить пропорциональные зависимости с учетом исходных геометрических параметров транспортных каналов.

Размерность проводников также имеет значение. Электрическое сопротивление (R) равно удельному значению для определенного материала (Rуд), умноженному на длину (L) и деленому на соответствующее поперечное сечение (S). Если известен только диаметр, то для круглой жилы можно применить классическую формулу из школьного курса геометрии:

S = (π * d2)/4 = (3,14 * d2)/4.

Длину вычисляют по преобразованному выражению:

L = S * (R/ Rуд).

Эти пропорции демонстрируют, от чего зависит сопротивление.

Удельное сопротивление кабеля таблица

Главная > Теория > Удельное сопротивление меди

Формула вычисления сопротивления проводника

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l.

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Удельное сопротивление металлов

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l)/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

g=1/R.

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Сопротивление проводов

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

P=I²*R.

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Таблица выбора сечения провода по допустимому нагреву

Вывод

Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами .

Источник