§ 3.11. электрический ток в вакууме

Общие сведения

Любое физическое тело, будь то газ, жидкость или твёрдое вещество состоит из набора молекул, образованных ковалентными связями атомов. Это электрически нейтральные частицы, не несущие заряды. С точки зрения квантовой физики, молекула — это система, состоящая из ядер и электронов.

В равновесном состоянии число положительных частиц равняется количеству отрицательных. Поэтому тело находится в энергетическом равновесии.

Установлено, что электрический ток возможен при существовании так называемых свободных частиц — электронов. Они не привязаны к ядрам и хаотично перемещаются по физическому телу. Из-за того что их движение хаотичное, то заряд, который они несут, скомпенсирован. Для того чтобы появился электроток, протекающий длительное время нужно выполнение трёх условий:

  • существование свободных носителей зарядов;
  • действие электрического поля;
  • замкнутая цепь.

Сторонние силы источника тока обеспечивают круговорот зарядов перемещая их в цепи против электрического поля на определённом участке. Из опытов стало известно, что сила тока пропорциональна работе (напряжению) которую необходимо выполнить, чтобы переместить заряд из одной точки в другую. То есть для того чтобы появился электроток должна быть создана разность потенциалов. Такое состояние характерно для металлов полупроводников и даже газов с жидкостями (явление пробоя). Но безвоздушное пространство отличается от них тем что в нём ничего нет.

На самом деле существует два понятия вакуума:

  • физическое — под ним понимают состояние газа, при котором длина свободного пробега молекул больше размера сосуда;
  • технический — сильно разряжённый газ.

Поэтому физики считают, что вакуум — это пространство в котором нет молекул атомов или ионов. Для того чтобы протекал ток нужны заряженные частицы. Вот ими как раз и являются электроны, но при этом они не существуют в вакууме сами по себе, а помещаются туда. Впервые процесс внесения отрицательных частиц в такую среду был выполнен Томасом Эдисоном в 1884 году. Он не был учёным, а был изобретателем. Его лампа накаливания и исследование свойств проводника при нагреве и послужили толчком для создания электровакуумного диода — устройства, проводящего эл. ток в вакууме.

Электрический ток в газах

Электрический ток в газах называют разрядом. Обычно газы состоят из нейтральных молекул, поэтому они являются диэлектриками. Чтобы появились носители электрического заряда, необходима затрата энергии.

Несамостоятельный разряд. При нагреве газа или при облучении его атомов могут отделиться электроны, и атомы превращаются в положительные ионы.

Самостоятельный разряд. В газах при столкновении молекул может освободиться хотя бы один электрон. Если он попадет в электрическое поле, то начнет двигаться с ускорением. Сталкиваясь с нейтральным атомом газа, ускоренный электрон может «выбить» из него другой электрон, превратив сам атом в положительный ион. Электроны будут и дальше ускоряться, разрушая атомы. Ионы создают ток в противоположном направлении. Таким образом, электрический ток в газах создается электронами и ионами.

Основные понятия

С первого взгляда кажется, что ток и вакуум — это несовместимые понятия. Ведь в диэлектрике упорядоченное движение зарядов невозможно. Но на самом деле это не совсем так. Чтобы понять, почему же возникает проводимость в вакууме нужно изучить природу возникновения тока и что представляет собой газовое пространство с давлением ниже атмосферного.

В любом теле существуют частицы. Они могут находиться в свободном состоянии или быть привязаны к атому. Те и другие обладают определённым зарядом. Первые хаотично передвигаются в теле, компенсируя перемещение зарядов. Но если к материалу приложить силу, которая заставит носителей заряда двигаться в одном направлении, то возникнет электрический ток.

Его сила определяется количеством частиц прошедших через поперечное сечение тела за единицу времени. Измеряется она в амперах. Носителями зарядов могут быть:

  • протоны;
  • ионы;
  • электроны;
  • дырки.

Любое физическое тело состоит из молекул. Формируют их атомы, вокруг которых вращаются электроны. При химической реакции или внешнем воздействии электромагнитных полей происходит перемещение электронов. Они выбиваются или притягиваются другим телом, испытывающим недостаток в элементарных частицах. В результате возникает ток. Его направление совпадает с напряжённостью поля, формирующего движение частиц и создающего электричество.

Вакуум по определению представляет собой пространство, в котором нет вещества. Физики им называют среду, заполненную газом давление, которого меньше атмосферного. Воздух состоит из молекул, которые, двигаясь хаотично, сталкиваются друг с другом и различными препятствиями. Расстояние, которое молекула преодолевает после удара, называют длиной свободного пробега.

Если воздух заключить в сосуд и из него выкачивать воздух, то наступит такой момент, при котором молекулы не будут испытывать столкновение. То есть их свободный пробег будет определяться размерами ёмкости. Таким образом, хоть в сосуде и создался вакуум, некоторое количество молекул в среде останется.

Откачать же все частицы практически невозможно. Может только образоваться так называемый глубокий вакуум, в котором частичка практически не встречает сопротивление движению.

https://youtube.com/watch?v=eO61uwWODtA

https://youtube.com/watch?v=NZlfo7SXf9U

https://youtube.com/watch?v=UJrpUMp5mYw

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине

Электрофорез

  • диагностика — биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология. Электроэнцефалография — метод исследования функционального состояния головного мозга.
  • Электрокардиография — методика регистрации и исследования электрических полей при работе сердца.
  • Электрогастрография — метод исследования моторной деятельности желудка.
  • Электромиография — метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.

Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезнь болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Вакуумный диод

Прибором простейшего вида, использующим явление возникновения электричества, порождаемого термоэлектронной эмиссией, является вакуумный диод. Его работа довольно простая, а сам прибор относится к простейшим устройствам. Основной характеристикой диода является вольт-амперная зависимость.

Она имеет три участка: нелинейный, степенной, насыщения. На первом происходит медленное возрастание силы тока при увеличении напряжения. Эта зависимость экспоненциальная. На втором промежутке изменение описывается формулой: I = G * U 3/2 где: G — проводимость, величина, обратная сопротивлению. Третий участок характеризуется тем что при росте напряжения значение тока практически не изменяется. Это связано с тем что число электронов, вылетевших из проводника, становится постоянным для любого момента времени.

Сам электронный прибор представляет собой колбу с двумя электродами. В середине сосуда создан физический вакуум. Один электрод (катод) предназначен для испускания электронов, а другой (анод) для их получения. Катодный вывод состоит из нити, которая разогревается под действием тока и длинного цилиндра с уложенным в него спиралью подогревателя.

При нагреве электрода возникает термоэлектронная эмиссия. Электроны покидают поверхность и создают облако с избытком отрицательных зарядов. Поверхность же вывода начинает заряжаться положительно. Некоторое количество частиц, обладающих небольшой скоростью, падают на катод, но быстрые электроны преодолевают барьер и переходят на анод. Если на положительный вывод подать прямое смещение, то возникнет ускоряющее поле, которое ещё больше способствует переносу электронов.

Наиболее часто в качестве термокатода используют вольфрам или смесь окислов щёлочноземельных металлов. Следует отметить, что к основным параметрам диода относят крутизну вольт-амперной характеристики ток насыщения и запирающее напряжение. Последнее определяет значение, при котором происходит пробой — появление искры с дугой и увеличение в несколько раз силы тока. То есть нарушения прочности вакуума.

https://youtube.com/watch?v=229qwK2ysTE

Конспект лекции по физике на тему «Электрический ток в газах и в вакууме»

Электрический ток в газах и вакууме

При обычных условиях газы плохие проводники тока. Для повышения проводимости можно газ либо нагреть, либо облучать разного рода лучами: ультрафиолетовыми, рентгеновскими и т.д.

Ток в газах — это направленное движение ионов и свободных электронов, при этом ток в газах называют РАЗРЯДОМ.

Газ, в котором большая часть атомов или молекул, ионизирована, называется ПЛАЗМОЙ.

Различают разряды: ТИХИЙ, ИСКРОВОЙ, ДУГОВОЙ.

Тихий разряд бывает трех видов: НЕСВЕТЯЩИЙСЯ, КИСТЕВОЙ и КОРОННЫЙ.

Некоторые применения коронного разряда в газах:

  • Коронный разряд применяется для очистки газов от пыли и сопутствующих загрязнений (электростатический фильтр), для диагностики состояния конструкций (позволяет обнаруживать трещины в изделиях).
  • Коронный разряд применяется в копировальных аппаратах (ксероксах) и лазерных принтерах для заряда светочувствительного барабана, переноса порошка с барабана на бумагу и для снятия остаточного заряда с барабана.
  • Коронный разряд применяется для определения давления внутри лампы накаливания. Величина разряда зависит от острия и давления газа вокруг него. Острие у всех ламп одного типа — это нить накала. Значит, коронный разряд будет зависеть только от давления. А значит, о давлении газа в лампе можно судить по величине коронного разряда.

Искровой разряд наблюдается в виде искры на электродах.

Дуговой разряд наблюдается между двумя электродами, когда расстояние между ними мало, а пространство заполнено раскаленными газами и парами веществ, из которых состоят электроды. Впервые дугу открыл в 1802 г В.В. Петров, с тех пор дуга называется дугой Петрова.

В вакууме нет носителей электрических зарядов, поэтому при нормальных условиях ток в вакууме не протекает. Но американский ученый Томас Эдисон обнаружил, что если один из электродов в стеклянной колбе нагреть, то возникает ток. При этом было обнаружено, что нагретый катод испускает со своей поверхности электроны. Это явление получило название — ТЕРМОЭЛЕКТРОННОЙ ЭМИССИИ.

Простейший электровакуумный прибор —ДИОД.

Диод состоит из стеклянного баллона, в котором находятся катод и анод. Анод изготовлен из металлической пластины, а катод из тонкой проволоки, свернутой в спираль, которую принято называть НИТЬЮ НАКАЛА лампы.

ОСНОВНОЕ СВОЙСТВО ДИОДА — односторонняя проводимость, т.е. только при правильном подключении ток будет проходить.

ТРИОД — электровакуумный прибор, который состоит из стеклянного баллона, в котором находятся три электрода: анод, катод и сетка. При помощи сетки, подавая тот или иной потенциал на нее, можно регулировать поток электронов.

Действительно, если на сетку подать положительный потенциал относительно катода, то большая часть электронов пройдет к аноду. Если же на сетку подать отрицательный относительно катода потенциал, то электрическое поле между сеткой и катодом будет препятствовать прохождению электронов. Т.о. изменяя напряжение между сеткой и катодом можно регулировать силу тока в цепи анода.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».Между электродами сварочного аппарата возникает дуговой разряд. Дуговой разряд горит в ртутных лампах — очень ярких источниках света.Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Структура диода вакуумного типа

Во внутренней вакуумной полости баллона размещается пара электродов:

Изготавливаемый из металлов, вертикально расположенный элемент цилиндрической формы. На поверхности сформировано напыление из металлических оксидов (используются металлы земельно-щелочной группы) поэтому катод называется оксидным. Катоды данного типа отличаются тем, что в момент повышения температуры электроны отделяются от них гораздо активнее, чем от стандартных катодов металлического типа. По катоду проводится изолированный проводниковый элемент, который нагревается посредством тока переменной или постоянной частоты. Отделяющиеся от элемента отрицательно заряженные частицы находятся в потоке и притягиваются в сторону анодного электрода.

Катоды диодов вакуумного типа выполняются преимущественно по подобию W и V литер. Это позволяет увеличить размер устройства по длине.

Округлый или элиптоидный цилиндрический элемент. Расположен на одной горизонтали с катодом.

Аноды выполняются по форме кубообразные элементы с отсутствующими боковыми гранями. Если рассматривать его в разрезе, то можно увидеть закруглённый на углах четырёхугольник. Видимая конструкция обусловлена тем, что промежуток катод-анод по всем векторам направлений должен быть одинаковым. По этой причине и катоды, и аноды контуром похожи на эллипс.

Для уменьшения нагреваемости анода, в его конструкцию обычно включаются специальные теплоотводные «ребра» .

Закрепление катодов и анодов осуществляется посредством особых держателей.

ФИЗИКА

§ 3.11. Электрический ток в вакууме

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы. В этих лампах, а также в электронно-лучевых трубках, широко используемых и сейчас, электроны движутся в вакууме. Как же получают потоки электронов в вакууме? Какими свойствами они обладают?

Когда говорят об электрическом токе в вакууме, то имеют в виду такую степень разрежения газа, при которой можно пренебречь соударениями между его молекулами. В этом случае средняя длина свободного пробега молекул больше размеров сосуда.

Такой разреженный газ является изолятором, так как в нем нет (или почти нет) свободных заряженных частиц — носителей электрического тока.

На рисунке 3.27 изображена схема цепи, содержащей сосуд, из которого откачан воздух. В этот сосуд впаяны два электрода, один из которых (анод (А) соединен с положительным полюсом источника тока (батарея G1), другой (катод К) — с отрицательным. Несмотря на достаточно большое напряжение, которое обеспечивает источник тока (около 100 В), включенный в цепь чувствительный гальванометр не фиксирует тока; это указывает на отсутствие в вакууме свободных носителей заряда.

Рис. 3.27

Электронная эмиссия

Электрический ток в вакууме будет существовать, если ввести в сосуд свободные носители заряда. Как это осуществить?

Наиболее просто проводимость межэлектродного промежутка в вакууме можно обеспечить с помощью электронной эмиссии с поверхности электродов. Электронная эмиссия возникает в случаях, когда часть электронов металла (электрода) приобретает в результате внешних воздействий энергию, достаточную для преодоления их связи с металлом (для совершения работы выхода Авых).

В § 3.8 мы уже познакомились с двумя видами электронной эмиссии: ионно-электронной эмиссией (при бомбардировке катода положительными ионами) и термоэлектронной эмиссией (испускание электронов с поверхности достаточно нагретого металла). Электроны испускаются также при воздействии на поверхность металла электромагнитным излучением. Такое явление называется фотоэлектронной эмиссией. И наконец, с поверхности металла испускаются электроны при бомбардировке ее быстрыми электронами. Это вторичная электронная эмиссия.

Все виды эмиссии широко используются для получения электрического тока в вакууме. Однако в большинстве современных электронных вакуумных приборов используется термоэлектронная эмиссия.

Получение электрического тока в вакууме

Посмотрим, как, используя термоэлектронную эмиссию, можно получить ток в вакууме. Для этой цели внесем изменения в цепь, схема которой изображена на рисунке 3.27. В качестве катода в вакуумном баллоне теперь впаяна вольфрамовая нить, концы которой выведены наружу и присоединены к источнику тока — батарее накала G2 (рис. 3.28). Замкнем ключ S2 и, когда вольфрамовая нить накалится, замкнем и ключ S1. Стрелка прибора при этом отклонится, в цепи появился ток. Значит, накаленная нить обеспечивает появление необходимых для существования тока носителей заряда — заряженных частиц.

Рис. 3.28

С помощью опыта нетрудно убедиться, что эти частицы заряжены отрицательно.

Изменим полярность анодной батареи G1 — нить станет анодом, а холодный электрод — катодом (рис. 3.29). И хотя нить по-прежнему накалена и по-прежнему посылает в вакуум заряженные частицы, тока в цепи нет.

Рис. 3.29

Из этого опыта следует, что частицы, испускаемые накаленной нитью, заряжены отрицательно — отталкиваются от холодного катода и притягиваются к аноду. Измерением заряда и массы было доказано, что катод испускает электроны.

Итак, электрический ток в вакууме представляет собой направленный поток электронов.

В отличие от тока в металлическом проводнике (где проводимость тоже электронная), в вакууме электроны движутся между электродами, ни с чем не сталкиваясь. Поэтому под действием электрического поля электроны непрерывно ускоряются. Скорость электронов у анода даже в маломощных электровакуумных приборах достигает нескольких тысяч километров в секунду, что в десятки миллиардов раз превышает среднюю скорость направленного движения электронов в металле.

Для создания тока в вакууме необходим специальный источник заряженных частиц. Действие такого источника обычно основано на термоэлектронной эмиссии.

7.Вакуумный диод

Для изучения ТЭЭ применяют устройство, которое называется вакуумный диод. Чаще всего конструктивно он представляет собой два коаксиальных цилиндра, помещенных в стеклянную вакуумную колбу.

Нагрев катода осуществляется электрическим током прямым или косвенным способом. При прямом – ток проходит через сам катод, при косвенном – внутри катода помещают дополнительный проводник – нить накала. Разогрев происходит до достаточно высоких температур, поэтому катод делают сложным. Основа – тугоплавкий материал (вольфрам), а покрытие – материал с малой работой выхода (цезий).

Диод относится к нелинейным элементам, т.е. он не подчиняется закону Ома. Говорят, что диод – это элемент с односторонней проводимостью. Большая часть ВАХ диода описывается законом Богуславского – Ленгмюра или законом «3/2»

При повышении температуры накала ВАХ сдвигается вверх и ток насыщения растет. Зависимость плотности тока насыщения от температуры описывается законом Ричардсона – Дешмана

Методами квантовой статистики можно получить эту формулу с const=B

одинаковой для всех металлов. Эксперимент показывает, что константы различны.

Термоэлектронный ток

Испущенные металлом свободные электроны образуют у поверхности металла электронное облако. Если создать в данной области электрическое поле, электроны начинают двигаться под действием сил поля. Иными совами, возникает электрический ток, называемый термоэлектронным.

Определение. Термоэлектронный ток

Термоэлектронный ток — ток, возникающий при испускании (эмиссии) электронов накаленными телами в вакуумных приборах.

Так, если в вакууме поместить две металлические пластины и создать между ними разность потенциалов и условия для термоэлектронной эмиссии, возникнет термоэлектронный ток. 

Электрический ток в вакууме широко используется в вакуумных приборах. Самый простой пример — электронная лампа, или вакуумный диод.

Вакуумный диод представляет собой баллон с откачанным воздухом, содержащий электроды: катод и анод. Электроны выбиваются из катода и летят к аноду.

Для вакуумного диода не выполняется закон Ома. При небольших значениях напряжения на аноде имеет место формула зависимости силы электрического тока от напряжения:

I=BU32

где B — коэффициент пропорциональности, который зависит от формы, расположения и размеров электродов.

При увеличении разности потенциалов между электродами сила тока будет расти. Однако, для термоэлектронного тока существует понятие тока насыщения. Это ток такой силы, при котором все электроны из электронного облака достигают другой анода. При достижении силы тока насыщения и дальнейшем росте разности потенциалов, сила тока насыщения не меняется.

Эмиссионную способность материала катода характеризует плотность тока насыщения, которая определяется по формуле Ричардсона-Дешмана:

j=1-hRiA·T2·e-qφkT.

Здесь h — постоянная Планка, hRi — усредненное значение коэффициента отражения электронов от потенциального порога, A — термоэлектрическая постоянная, равная 120,4 AК2·см2, T — температура, q — заряд электрона, qφ — работа выхода, k — постоянная Больцмана.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Электрический ток в вакууме. Электронная эмиссия.

Электрический ток в вакууме может проходить при условии, что в него будут помещены свободные носители заряда. Ведь вакуум это отсутствие, какого либо вещества. А значит, нет никаких носителей зарядов, чтобы обеспечить ток. Понятие вакуум можно определить так, когда длинна свободного пробега молекулы больше размеров сосуда.

Для того чтобы выяснить каким же образом можно обеспечить прохождение тока в вакууме проведем опыт. Для него нам понадобится электрометр и вакуумная лампа. То есть стеклянная колба с вакуумом, в которой находятся два электрода. Один, из которых выполнен в виде металлической пластины назовем его анод. А второй в виде проволочной спирали из тугоплавкого материала назовём его катод.

Подсоединим электроды лампы к электрометру таким образом, чтобы катод был подключён к корпусу электрометра, а анод к стержню. Сообщим заряд электрометру. Поместив положительный заряд на его стержень. Мы увидим, что заряд сохранится на электрометре, несмотря на наличие лампы. Это и не удивительно ведь между электродами в лампе нет носителей зарядов, то есть не может возникнуть ток, чтобы электрометр разрядился.

Рисунок 1 — вакуумная лампа, подключённая к заряженному электрометру

Теперь подключим к катоду в виде проволочной спирали источник тока. При этом катод разогреется. И мы увидим, что заряд электрометра начнет уменьшаться, пока совсем не исчезнет. Как же это могло произойти ведь в зазоре между электродами лампы небыли носителей заряда, чтобы обеспечить ток проводимости.

Очевидно, что носители заряда каким-то образом появились. А произошло это, потому что при нагревании катода в пространство между электродами эмитировались электроны с поверхности катода. Как известно в металлах есть свободные электроны проводимости. Которые способны перемещаться в объёме металла между узлами решётки. Но чтобы покинуть металл им недостаточно энергии. Так как их удерживают Кулоновские силы притяжения между положительными ионами решётки и электронами.

Электроны совершают хаотическое тепловое движение, перемещаясь по проводнику. Подходя к границе металла, где отсутствуют положительные ионы, они замедляются и в итоге возвращаются внутрь под действием силы Кулона, которая стремится приблизить два разноименный заряда. Но если металл подогреть, то тепловое движение усиливается, и электрон приобретает достаточно энергии чтобы покинуть поверхность металла.

При этом вокруг катода образуется так называемое электронное облако. Это электроны, вышедшие из поверхности проводника, и при отсутствии внешнего электрического поля они вернутся обратно в него. Так как, теряя электроны, проводник заряжается положительно. Это тот случай если бы мы сначала подогрели катод, а электрометр при этом был бы разряжен. Поле бы внутри при этом отсутствовало.

Но поскольку на электрометре есть заряд, он создает поле, которое заставляет двигаться электроны. Помните на аноде у нас положительный заряд к нему, и стремятся электроны под действием поля. Таким образом, в вакууме наблюдается электрический ток.

Если скажем, мы подключим электрометр наоборот, что при этом произойдет. Получится, что на аноде лампы будет отрицательный потенциал, а на катоде положительный. Все электроны, вылетевшие с поверхности катода, тут же вернутся обратно под действием поля. Поскольку катод теперь будет иметь еще больший положительный потенциал, он будет притягивать электроны. А на аноде будет избыток электронов отталкивающих электроны с поверхности катода.

Рисунок 2 — зависимость ток от напряжения для вакуумной лампы

Такая лампа называется вакуумный диод. Она способна пропускать ток только в одном направлении. Вольтамперная характеристика такой лампы состоит из двух участков. На первом участке выполняется закон Ома. То есть с увеличением напряжения все больше электронов вылетевших с катода долетают до анода и тем самым увеличивается ток. На втором участке все электроны, вылетевшие с катода, долетают до анода и с дальнейшим увеличением напряжения ток не увеличивается. Просто нет нужного количества электронов. Этот участок называется насыщением.

Смотреть видео : Ток в вакууме

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Как электрический ток может появиться в вакууме

Для того, чтобы создать в вакууме полноценный электрический ток, необходимо использовать такое физическое явление, как термоэлектронная эмиссия. Она основана на свойстве какого-либо определенного вещества испускать при нагревании свободные электроны. Такие электроны, выходящие из нагретого тела, получили название термоэлектронов, а все тело целиком называется эмиттером.

Термоэлектронная эмиссия лежит в основе работы вакуумных приборов, более известных, как электронные лампы. В самой простейшей конструкции содержится два электрода. Один из них катод, представляет собой спираль, материалом которой служит молибден или вольфрам. Именно он накаливается электрическим ток ом. Второй электрод называется анодом. Он находится в холодном состоянии, выполняя задачу по сбору термоэлектронов. Как правило, анод изготавливается в форме цилиндра, а внутри его размещается нагреваемый катод.

Условие существования электрического тока в вакууме

Вообще говоря, в вакууме не может проходить электрический ток, если в нем нет носителей заряда. Если в вакууме присутствуют электроны, то их движение обусловит появление тока, который называют током в вакууме. Следовательно, необходимо, чтобы в вакууме появились электроны. В металле имеется так называемый «электронный газ». При термодинамическом равновесии распределение электронов на энергоуровнях определено статистикой Ферми — Дирака и задано выражением:

где $\beta =\frac{1}{kT}$, $n_i$ — количество электронов, которые имеют энергию $E_i$, $g_i$ — число квантовых состояний, которые соответствуют энергии $E_i$, $\mu $ — энергия Ферми при температуре T (при $T\to 0K\ \mu \to {\mu }_{0\ }при\ T=0K$). Так как выражение для энергии Ферми записывают как:

Помощь со студенческой работой на тему Электрический ток в вакууме

Курсовая работа 450 ₽ Реферат 260 ₽ Контрольная работа 190 ₽ Получи выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

В большинстве случаев $\mu \gg kT$, следовательно, для выражения (1) можно полагать $\mu ={\mu }_{0\ }.$

Допустим, что $E_0-\ $энергия электрона около поверхности вне металла. Используя формулу (1) можно вычислить вероятность того, что электрон имеет энергию $E_0$, если ее подставить в (1) вместо $E_i$. Найденная вероятность будет отлична от нуля, причем она увеличивается с ростом температуры. Значит, вблизи поверхности металла присутствует электронное облако, находящееся в динамическом равновесии с электронным газом внутри металла. Электроны из электронного облака внутри металла имеют кинетическую энергию, которой достаточно для того, чтобы преодолеть силы, которые удерживали их внутри и выйти за пределы вещества. Электроны, находящиеся вне металла над его поверхностью при соответствующих условиях могут быть захвачены силами, которые удерживают электроны внутри. Получается, что в условиях динамического равновесия через поверхность металла протекают противоположно направленные токи, их силы равны по модулю. Сумма сил этих токов равна нулю.

Требуется вычитка, рецензия учебной работы? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией

, а сам раствор электролитом

, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Вольт-амперная характеристика

Во время работы вакуумной лампы для эмиссии заряженных частиц требуется определенная температура. Анодный электроток появляется после того, как электроны начинают перемещаться к аноду, обозначается как Іа при напряжении Uа. Вольтаж накала обозначается как Uн.

Для создания графика ВАХ (вольт амперной характеристики) подается небольшое плюсовое напряжение на анод, если оно постепенно увеличивается, отмечается увеличение тока. В процессе построения графика цифровые значения вольтажа откладываются на горизонтальной оси, на вертикальной – параметры анодного тока.

Если напряжения нет (Uа=0) электроны не перемещаются к аноду (Іа=0). После подключения вакуумного диода к источнику питания электроток растет медленно, потом увеличивается быстрее (до достижения точки Б). Если напряжение повышается, рост тока снижается, при достижении точки В прекращается.

ВАХ определяется при проведении технических расчетов перед использованием вакуумного диода.

Общие выводы

Таким образом, рассматривая тему как распространяется электрический ток в разных средах, можно отметить: в газах упорядоченное движение начинается под воздействием электрического поля.

Электрический ток в различных средах – растворы и расплавы электролитов. Многие электролиты в обычном своем состоянии являются диэлектриками. Но после растворения их в воде, эти вещества становятся проводниками. Данный процесс получил название электролитической диссоциации. Электрический ток в разных средах раствором протекает под воздействием внешнего электрополя. При этом одни ионы движутся к катоду, а другие – к аноду.