Эдс (электродвижущая сила) для начинающих физиков: что это такое?

Индуктивность.Электродвижущая сила самоиндукции

• Электромагнетизм •
  • Магнитное поле тока, магнитная индукция, магнитный поток
  • Электромагнитная сила
  • Взаимодействие парал лельных проводов с токами
  • Магнитная проницаемость
  • Напряженность магнитного поля,магнитное напряжение
  • Закон полного тока
  • Магнитное поле катушки с током
  • Ферромагнетики,их намагничивание и перемагничивание
  • Ферромагнитные материалы
  • Магнитная цепь и ее расчет
  • Электромагниты
  • Электромагнитная индукция
  • Принцип работы электричес кого генератора
  • Принцип работы электродви гателя
  • Вихревые токи
  • Индуктивность.Электродви жущая сила самоиндукции
  • Энергия магнитного поля
  • Взаимная индуктивность
• Обзор сайта •
  • Электрооборудование до 1000 В
  • Электрические аппараты
  • Электрические машины
  • Эксплуатация электро оборудования
  • Электрооборудование электротехнологических установок
  • Электрооборудование общепромышленных установок
  • Электрооборудование подъемно-транспортных установок
  • Электрооборудование металлообрабатывающих станков
  • Электрооборудование выше 1000 В
  • Электрические аппараты высокого напряжения
  • Электротехника
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока
  • Электромонтаж
  • С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
  • Монтаж электропроводки
  • Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
  • Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
  • Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
  • Электромонтаж и заземле ние розеток
  • Электромонтаж уравнива ния потенциалов
  • Электромонтаж контура заземления
  • Электромонтаж модульного штыревого контура заземле ния
  • Электромонтаж нагреватель ного кабеля для подогрева полов
  • Электромонтажные работы по прокладке кабеля в зем ле
  • Электричество в частном доме
  • Проект электроснабжения
• Электротехника •
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

При прохождении тока по цепи каждый контур или виток катушки пронизывается собственным магнитным потоком, который называется потоком самоиндукции ΦL. Сумма потоков самоиндукции всех витков контура или катушки называется потокосцеплением самоиндукции ΦL. При постоянной магнитной проницаемости среды магнитный поток и потокосцепление самоиндукции пропорциональны току. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется индуктивностью:

Индуктивность характеризует связь потокосцепления самоиндукции с током контура. Единицей измерения индуктивности в системе СИ служит генри (Г):

Ом-секунда или генри — крупная единица, поэтому часто пользуются дольными единицами — миллигенри (1 мГ 1 • 10-3 Г) и микрогенри (1 мкГ =1 • 10-6 Г). Условное обозначение участка цепи, обладающего индуктивностью, показано на рис. 3.32.

Определим индуктивность кольцевой катушки. Потокосцепление кольцевой катушки (3-20)

а индуктивность её

Таким образом, индуктивность катушки зависит от размеров катушки, от числа витков и от магнитной проницаемости среды (сердечника):

Всякое изменение тока в цепи (в контуре) сопровождается изменением магнитного потока и потокосцепления самоиндукции, а следовательно, возникновением э. д. с., которая в этом случае называется э. д. с. самоиндукции. Явление возникновения э. д. с. в контуре вследствие изменения тока в этом контуре называется самоиндукцией. Величина э. д. с. самоиндукции определяется по (3-29):

Следовательно,э. д. с. самоиндукции пропорциональна индуктивности и скорости изменения тока в цепи. Направление э. д. с. самоиндукции определяется по закону Ленца. При увеличений тока, т. е. при di/dt > О, э. д. с. eL отрицательна и, следовательно, направлена встречно току; наоборот, при уменьшении тока, т. е. при di/dt < О э. д. с. eL положительна и, следовательно, направлена одинаково с током.

Определение величины напряжения

Чем измеряется напряжение? Это производится специальным прибором – вольтметром. Он может иметь различную конструкцию, быть цифровым или стрелочным, но его сопротивление должно быть максимально возможным, а ток – минимальным. Это необходимо для того, чтобы свести к минимуму влияние прибора на сеть и потери в проводах, идущих от источника питания к вольтметру.

Вольтметр

Сеть постоянного тока

Эти измерения производятся магнитоэлектрическими приборами. В последнее время широко используются устройства с цифровым табло.

Самый простой способ – прямое подключение прибора к месту измерения. Это возможно при соблюдении ряда условий:

  • Предел измерения больше ожидаемого максимума. Если оно до начала измерений неизвестно, то следует выбрать наибольший предел и последовательно его уменьшать;
  • Соблюдение полярности подключения. При неправильном подключении стрелка отклонится в обратную сторону, а цифровое табло покажет отрицательную величину.

Если предел измерений недостаточен, то его можно расширить при помощи добавочного сопротивления. Оно может быть внешним или внутренним. Можно использовать несколько сопротивлений и переключать их для изменения предела прибора. Так устроен мультиметр.

Сеть переменного тока

Напряжение измеряется в сети переменного электрического тока приборами всех типов, кроме магнитоэлектрических. Эти устройства можно использовать, только подключив их к выходу выпрямителя.

Для увеличения предела измерения есть несколько способов. Для этого к прибору подключается дополнительно одно из устройств:

  • добавочные сопротивления;
  • при неизменной частоте сети вместо сопротивления используются конденсаторы;
  • самый распространённый вариант – применение трансформатора напряжения.

Требования к измерительным устройствам и дополнительным приспособлениям такие же, как к устройствам постоянного тока.

Схема подключения

Измерение разности потенциалов – это важный элемент наладки электрических и электронных схем, и от него зависит надёжность работы оборудования

Для того чтобы правильно их произвести, важно знать, в чем измеряется напряжение в цепях электрического тока

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

Что такое ЭДС

Что такое ЭДС, думаете Вы? Сейчас расскажу!

Электродвижущая сила (ЭДС) тоже измеряется в Вольтах, как и
напряжение.

Давайте возьмём прибор, который измеряет вольты (вольтметр),
батарейку и произведём замер.

Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).

А теперь подключим к батарейке лампочки.

Измерение напряжения на различных участках электрической цепи.

Заметили, что на одной лампочке напряжение (не ЭДС)
составляет 1 Вольт, а на другой 0,3 вольта

Напряжение на лампочках зависит от их мощности.Мощность измеряется
в Ваттах.

 Мощность= Напряжение
* ток (P=U*I)

Чем больше мощность лампочки, тем больше будет на ней
напряжение.

Если батарейка у нас 1,5 вольта= 1 Вольт +0,3 Вольта= 1,3
Вольта, куда делись 0,2 Вольта? У батарейки есть тоже своё внутреннее сопротивление,
вот туда они и ушли.

Разновидности

Бывает двух видов: постоянным и переменным. Первое есть в электростатических видах цепей и тех, которые имеют постоянный ток. Переменный встречается там, где есть синусоидальная энергия

Важно, что синусоидальная энергия делится на действующее, мгновенное со средневыпрямленным. Единица измерения напряжения электрического тока вольт

Стоит также отметить, что величина энергии между фазами называется линейной фазой, а показатель тока земли и фаз — фазным. Подобное правило используется во всех воздушных линиях. На территории Российской Федерации в электрической бытовой сети стандартное — 380 вольт, а фазное — 220 вольт.


Основные разновидности

Постоянное напряжение

Постоянным называется разность между электрическими потенциалами, при которой остается такой же величина с перепадами полярности на протяжении конкретного периода. Главным преимуществом постоянной энергии является тот факт, что отсутствует реактивная мощность. Это означает, что вся мощность, которая вырабатывается при помощи генератора, потребляется нагрузкой за исключением проводных потерь. Течет по всему проводниковому сечению.

Что касается недостатков, есть сложность повышения со снижением энергии, то есть в моменте преобразования ее из-за конструкции преобразователей и отсутствия мощных полупроводниковых ключей. К тому же сложно развязывается высокая и низкая энергия.

Обратите внимание! Используется постоянная энергия в электронных схемах, гальванических элементах, аккумуляторах, электролизных установках, сварочных инструментах, инверторных преобразователях и многих других приборах. Вам это будет интересно Генератор из асинхронного двигателя своими руками

Вам это будет интересно Генератор из асинхронного двигателя своими руками


Постоянный ток

Переменное напряжение

Переменным называется ток, изменяющийся по величине и направлению периодически, но при этом сохраняющий свое направление в электроцепи неизменно. Нередко его называют синусоидальным. Одно направление, в котором движется энергия, называется положительным, а другое — отрицательным. Поэтому получающаяся величина называется положительной и отрицательной. Такой показатель является алгебраической величиной. В ответ на вопрос, как называется единица измерения напряжения, необходимо отметить, что это вольт. Значение его определяется по направлению. Максимальное значение — амплитуда. Бывает он:

двухфазным;


Двухфазный

трехфазным;


Трехфазный

многофазным.


Многофазный Используется активно в промышленности, на электрической станции, на трансформаторной подстанции и передается в каждый дом при помощи линий электрических передач. Больше всего используется три фазы для подключения. Подобная электрификация распространена на многих железных дорогах.

Обратите внимание! Стоит отметить, что имеются также некоторые виды двухсистемных электровозов, которые работают во многих случаях на переменном показателе. Переменный ток


Переменный ток

Что такое напряжение?

Существует разница в электрических состояниях на полюсах (клеммах) источника. На отрицательном полюсе имеется избыток электронов и нехватка электронов на положительном. В замкнутой цепи тока электроны движутся от отрицательной половины к положительной половине через проводники и приборы. Разность электрических потенциалов называется электрическим напряжением . Электрическое напряжение равно количеству работ, выполняемых электрической силой при перемещении заряда из одной точки поля в другую и этой зарядке. Электрическое напряжение измеряется вольтах . Измеритель напряжения называется вольтметром.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Будет интересно Что такое электрическое поле: объяснение простыми словам

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

Что такое самоиндукция.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Таблица параметров электродвижущей силы индукции.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

Магнитный поток

Известно, что пропускание тока через проводник сопровождается формированием электромагнитного поля. На этом принципе основана работа динамиков, запорных устройств, приводов реле, других приспособлений. Изменением параметров источника питания получают необходимые силовые усилия для перемещения (удержания) совмещенных деталей, обладающих ферромагнитными свойствами.

Однако действительно и обратное утверждение. Если между полюсами постоянного магнита перемещать рамку из проводящего материала по соответствующему замкнутому контуру, начнется перемещение заряженных частиц. Подключив соответствующие приборы, можно регистрировать изменение тока (напряжения). В ходе элементарного эксперимента можно выяснить увеличение эффекта в следующих ситуациях:

  • перпендикулярное расположение проводника/силовых линий;
  • ускорение перемещений.

На картинке выше показано, как определять направление тока в проводнике с помощью простого правила.

ЭДС гальванического элемента

Гальванический элемент – это источник тока, создающий его из химической энергии. Рассмотрим элемент Даниэля-Якоби, представляющий собой цинковую и медную пластины в соответствующих растворах сульфатов, соединённые между собой электролитом. Если соединить пластины металлическим стержнем, начнётся перераспределение зарядов: свободные электроны будут перемещаться к электроду с менее отрицательным зарядом (медной пластине). То есть возникнет электрический ток. Его работа будет максимальной в том случае, когда процессы на электродах (окисление и восстановление вследствие изменения числа электронов) будут протекать бесконечно медленно.

ЭДС гальванического элемента – максимальная разность потенциалов, возможная в такой ситуации.

https://youtube.com/watch?v=Ixrp3AptcPM

Резюме

  • Количество, адекватно представляющее генератор как элемент электрической цепи и количественно характеризующее его способность поддерживать ток в цепи и преобразовывать другие формы энергии в электрическую, называется электродвижущей силой. Для того чтобы источник имел разность потенциалов полюса, электроны должны «перемещаться» от одного полюса к другому, т. Е. Требуется операция разделения заряда. Работа, выполняемая на блоке заряда внешней силой путем деления зарядов на источнике электрического тока, называется электродвижущей силой. Электродвижущая сила (ЭДС) имеет размер напряжения (единица напряжения) и также называется внутренним напряжением источника (U0). Электродвижущая сила того же размера, что и разность потенциалов между положительным и отрицательным соединениями генератора, когда он находится в режиме ожидания.
  • Разность потенциалов между двумя точками электрического поля называется напряжением, а единица также равна напряжению. Электрическое напряжение является причиной потока электронов в электрической цепи на (-) отрицательный полюс с избытком электронов на (+) положительный полюс с электронным дефектом – электроны движутся от (-) половины до (+) полюса ,

Трехфазный ток

Трехфазная система – это система электрической цепи, работающая на трех цепях, в которых действуют силы одной и той же частоты, но сдвинутые по фазе друг от друга на одну треть периода или на 120 градусов. Каждая отдельная цепь такой системы называется фазой, а система из трех сдвинутых по фазе токов называется трехфазным током.

Вам это будет интересно Особенности люменов и люксов

Практически все современные генераторы в домах и на электростанциях представляют собой генераторы трехфазного тока. Фактически это один большой генератор, состоящий из трех маленьких двигателей, которые генерируют токи, электродвижущие силы в них сдвинуты относительно друг друга на 120 градусов или одну треть периода.

График трехфазного сигнала

https://youtube.com/watch?v=3s8I6r9rVYg

https://youtube.com/watch?v=KEygFTnXRi8

Формула нахождения эдс

Первым делом разберемся с определением. Что означает эта аббревиатура?

ЭДС или электродвижущая сила – это параметр характеризующий работу любых сил не электрической природы, работающих в цепях где сила тока как постоянного, так и переменного одинакова по всей длине. В сцепленном токопроводящем контуре ЭДС приравнивается работе данных сил по перемещению единого плюсового (положительного) заряда вдоль всего контура.

Ниже на рисунке представлена эдс формула.

Аст – означает работу сторонних сил в джоулях.

q – это переносимый заряд в кулонах.

Сторонние силы – это силы которые выполняют разделение зарядов в источнике и в итоге образуют на его полюсах разность потенциалов.

Для этой силы единицей измерения является вольт. Обозначается в формулах она буквой E».

Только в момент отсутствия тока в батареи, электродвижущая си-а будет равна напряжению на полюсах.

ЭДС индукции:

ЭДС индукции в контуре, имеющем N витков:

При движении:

Электродвижущая сила индукции в контуре, крутящемся в магнитном поле со скоростью w

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

https://youtube.com/watch?v=mp7C6S2gawQ

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

https://youtube.com/watch?v=wJmAFdd9Xm8

Химическая электродвижущая сила

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

Вывод

Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами .

Источник