Разность потенциалов электрического поля

Содержание

Разность потенциалов — энергетическая характеристика

Любой заряд при своем движении в электрическом поле имеет начальную позицию, точку в пространстве поля, которая характеризуется потенциалом φначальное, и конечную точку, которая также имеет свой потенциал φконечное. Разность между двумя этими величинами потенциалов называется Δφ — разность потенциалов, а иначе еще называют электрическим напряжением поля.

Следует различать электрическое напряжение поля в электростатическом потенциальном поле, где нет вихрей, и падение электрического напряжения в электротехнических цепях, а также напряжение, которое является ЭДС (электродвижущая сила). Для того, чтобы не было путаницы, обычно для электрического поля употребляют выражение «разность потенциалов», для электрических цепей — «падение напряжения», а для источников тока — «ЭДС источника». Когда отсутствует понимание различия таких определений, становится трудно разобраться в сути сложных явлений в мире электротехники, электроники и автоматики. Что же роднит все эти три такие похожие, но всё-таки различные понятия? Прежде всего общее здесь то, что все три характеризуют энергетическое состояние. Но далее, при ответе на вопрос «Энергетическое состояние чего?», идут различия. Разность потенциалов характеризует энергетику электрического потенциального поля, падение напряжения — для участка электрической цепи, а ЭДС источника — это энергетическая характеристика устройства создающего электрический ток. Общность при ответе на вопрос: «Что это?», а различия при ответе на вопрос «Где?». Всё познается в сравнении, поэтому необходимо отлично ориентироваться во всех трёх вышеуказанных понятиях.

Имеем некоторый путь пройденный зарядом q от точки A до точки B, от начального потенциала, к конечному, а разница между ними и есть разность потенциалов. О чем это нам говорит? Если Δφ=φAB (разность потенциалов), тогда чтобы узнать какую работу, которую совершил заряд проделавший путь, нам надо Δφ умножить на величину заряда q, причем надо учесть знак заряда.

Полученное значение является работой, которую совершает заряд при перемещении. Иначе говоря, потенциальная энергия поля преобразуется в кинетическую энергию заряда, а так как заряд, в случае движения в сторону противоположного ему знака уменьшает напряженность поля, то потенциальная энергия поля уменьшится.

В случае, если некоторые не кулоновские силы воздействуют на заряд и тем самым переместят его в сторону поля, где знак такой же как у заряда, то работа будет совершена с противоположным знаком, точнее сказать она будет затрачена извне и общее энергетическое состояние поля увеличится. В одном случае потенциальная энергия поля уменьшается, за счет того, что часть этой энергии переходит в кинетическую, а в другом случае, если действуют на заряд внешние механические силы против кулоновских сил — потенциальная энергия возрастает из внешнего источника. В первом случае заряд движется в сторону уменьшения своего энергетического состояния, а во втором случае он движется в сторону увеличения своего энергетического состояния. Соответственно работа совершатся может либо с положительным знаком, либо с отрицательным.

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

где ​\( \vec{E} \)​ – напряженность электрического поля, ​\( q \)​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Потенциал. Разность потенциалов. ЗАДАЧИ с решениями

Формулы, используемые на уроках «Решение задач на тему: Работа перемещения заряда в электрическом поле. Потенциал. Разность потенциалов» для подготовки к ЕГЭ.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 Металлический шар диаметром d заряжен с поверхностной плотностью зарядов σ. Найти потенциал φ этого шара, если он окружен заземленной проводящей сферой, имеющей общий с шаром центр. Диаметр сферы D. Среда — воздух.

Задача № 2.
 Потенциал заряженного шара φ1 = 300 В. Чему равен потенциал φ2 электрического поля этого шара в точке, отстоящей на расстоянии l = 50 см от его поверхности, если радиус шара R = 25 см?

Задача № 3.
 Определить потенциал φ точки поля, находящейся на расстоянии а =  9 см от поверхности заряженного шара радиусом R = 1 см, если поверхностная плотность зарядов на шаре σ = 1 • 10–11 Кл/см2. Среда — воздух.

Задача № 4.
 В точке 1 поля точечного заряда-источника потенциал φ1 = 40 В, а в точке 2 φ2 = 10 В. Найти потенциал φ в точке М, лежащей посередине между точками 1 и 2 (рис. 3-6). 

Задача № 5.
 В трех вершинах квадрата со стороной а = 20 см находятся заряды q1 = 1 • 10–8 Кл, q2 = 2 • 10–8 Кл и q3 = 2 • 10–8 Кл (рис. 3-7). Определить потенциал φ электрического поля, созданного этими зарядами в четвертой вершине. 

Задача № 6.
 Четыре одинаковых точечных заряда q расположены на одной прямой на расстоянии r друг от друга. Какую работу А надо совершить, чтобы переместить эти заряды в вершины тетраэдра со стороной r? Среда — вакуум.

Задача № 7.
Два одинаково заряженных шарика диаметрами d = 0,5 см каждый расположены на расстоянии l = 2 см между их поверхностями (рис. 3-14). До какого потенциала φ они заряжены, если сила их отталкивания друг от друга F = 2 мкН? Среда — воздух. 

Задача № 8.
 В однородном электрическом поле напряженностью Е = 2 кВ/см переместили заряд q = –20 нКл в направлении силовой линии поля на расстояние d = 10 см. Найти работу поля А, изменение потенциальной энергии поля ΔWп и напряжение (разность потенциалов) U между начальной и конечной точками перемещения.

Задача № 9.
 Между двумя горизонтальными плоскостями, заряженными разноименно и расположенными на расстоянии d = 5 мм друг от друга, находится в равновесии капелька масла массой 20 нг (нанограмм) (рис. 3-10). Найти число избыточных электронов N на этой капельке. Среда — воздух. Разность потенциалов между плоскостями U = 2 кВ. 

Задача № 10.
 На пластине М поддерживается потенциал φ1 = +80 В, а на пластине N – φ2 = –80 В (рис. 3-11, а). Расстояние между пластинами d = 10 см. На расстоянии d1 = 4 см от пластины М помещают заземленную пластину Р (рис. 3-11, б). Найти изменение напряженности ΔЕ1 поля на участке МР и изменение напряженности поля ΔЕ2 на участке PN при этом. Построить графики зависимостей напряженностей Е = Е(х) и потенциала φ = φ(х) от расстояния между точками поля и пластинами. 

Это конспект по теме «Потенциал. Разность потенциалов. ЗАДАЧИ с решениями». Выберите дальнейшие действия:

  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Разность потенциалов и работа заряда

Когда носитель электрического заряда оказывается в электростатическом поле, на него неизбежно начинает действовать кулоновская сила. Это приводит к тому, что носитель заряда начинает перемещаться в пространстве, если, конечно, кулоновские силы не скомпенсированы другими, противодействующими силами. Рассмотрим случай, когда в электрическом поле оказался пробный зарядq

совершенно свободный от действия других сил. Как только этот заряд окажется в зоне действия силовых линий электрического поля, то на него будет действовать сила в соответствии с Законом Кулона.

Как известно, механическая сила является векторной величиной, а значит имеет и величину, и направление. Носитель заряда в электрическом поле начнет менять свое энергетическое состояние. Как это проявляется? Одноименные заряды отталкиваются, а разноименные притягиваются.

Наш заряд в зависимости от знака начнет сближаться с противоположным ему знаком заряда, которое и образует электрическое поле. Легче всего это увидеть, посмотрев на силовые линии напряженности поля.

Согласно правилам они имеют направление от заряда +Q

к заряду-Q , иначе говоря выходят изположительных зарядов (источника) и заходят вотрицательные заряды (источника).

Направление силы действия на пробный заряд q

определить очень легко, если он положительный, то сила будет направлена по силовым линиям поля, а если отрицательный, то против силовых линий. Траектория движения будет зависеть от начальной скорости заряда, ее величины и направления. Действующая сила будет ускорять заряд, то есть его скорость по величине и направлению будет меняться в сторону действия кулоновской силы.

Движение заряда q

в электрическом поле

На рисунке изображена примерная траектория движения заряда +q

, имеющего некоторую начальную скоростьV0 . Если бы заряд имел противоположный знак, то траектория движения была бы зеркально отражена от оси X, и заряд бы двигался в сторону пластины (+). По оси Y можно изобразить шкалу потенциала, которая так же будет иметь полярность.

Спрашивается.

Что это за шкала и как определить где больший, а где меньший потенциал? Учитывая, что по определению и по действующим правилам силовые линии выходят из зарядов (+) и уходят в бесконечность, где потенциал равен нулю, то максимальный положительный потенциал будет в начале силовых линий от источника, а максимальный отрицательный потенциал там, где линии заходят в источник поля.

Наш заряд +q

, изображенный на рисунке выше будет двигаться от большего потенциала к меньшему, тем самым уменьшая потенциальную энергию поля, а точнее, преобразуя ее в кинетическую энергию. Если же в нашем случае был заряд-q , то для него потенциалы поменяли бы знак, арифметически, за счет умножения на -1, он всё также бы двигался в сторону уменьшения энергии поля.

Разность потенциалов — энергетическая характеристика

Любой заряд при своем движении в электрическом поле имеет начальную позицию, точку в пространстве поля, которая характеризуется потенциалом φначальное

, и конечную точку, которая также имеет свой потенциалφконечное . Разность между двумя этими величинами потенциалов называетсяΔφ — разность потенциалов, а иначе еще называют электрическим напряжением поля.

Следует различать электрическое напряжение поля в электростатическом потенциальном поле, где нет вихрей, и падение электрического напряжения в электротехнических цепях, а также напряжение, которое является ЭДС (электродвижущая сила). Для того, чтобы не было путаницы, обычно для электрического поля употребляют выражение «разность потенциалов»

, для электрических цепей —«падение напряжения» , а для источников тока —«ЭДС источника» . Когда отсутствует понимание различия таких определений, становится трудно разобраться в сути сложных явлений в мире электротехники, электроники и автоматики.

Что же роднит все эти три такие похожие, но всё-таки различные понятия? Прежде всего общее здесь то, что все три характеризуют энергетическое состояние. Но далее, при ответе на вопрос «Энергетическое состояние чего?», идут различия. Разность потенциалов характеризует энергетику электрического потенциального поля, падение напряжения — для участка электрической цепи, а ЭДС источника — это энергетическая характеристика устройства создающего электрический ток. Общность при ответе на вопрос: «Что это?», а различия при ответе на вопрос «Где?».

Эдс, разность потенциалов и напряжение

Электродвижущая
сила
 (ЭДС) —
скалярная физическая
величина,
характеризующая работу сторонних (н
епотенциальных) сил висточниках постоянного
или переменного тока. В замкнутом
проводящем контуре ЭДС равна работе этих
сил по перемещению единичного
положительного заряда вдоль
контура.

ЭДС
можно выразить через напряжённость
электрического поля сторонних
сил ().
В замкнутом контуре ()
тогда ЭДС будет равна:

,
где —
элемент длины контура.

Причиной
электродвижущей силы может стать
изменение магнитного
поля в
окружающем пространстве. Это явление
называетсяэлектромагнитной
индукцией.
Величина ЭДС индукции в контуре
определяется выражением

где — поток
магнитного поля через
замкнутую поверхность ,
ограниченную контуром. Знак «−» перед
выражением показывает, что индукционный
ток, созданный ЭДС индукции, препятствует
изменению магнитного потока в контуре
(см. правило
Ленца).

Если поле
непотенциально, то напряжение зависит
от того пути, по которому перемещается
заряд между точками. Непотенциальные
силы, называются сторонними, действуют
внутри любого источника постоянного
тока (генератора, аккумулятора,
гальванического элемента и др.).

Под
напряжением на зажимах источника тока
всегда понимают работу электрического
поля по перемещению единичного
положительного заряда вдоль пути,
лежащего вне источника; в этом случае
Э. н. равно разности потенциалов на
зажимах источника и определяется законом
Ома: U = IR—E, где I — сила тока, R — внутреннее
сопротивление источника, а E — его
электродвижущая сила (эдс).

При разомкнутой
цепи (I = 0) напряжение по модулю равно
эдс источника. Поэтому эдс источника
часто определяют как Э. н. на его зажимах
при разомкнутой цепи.

В случае переменного
тока Э. н. обычно характеризуется
действующим (эффективным) значением,
которое представляет собой среднеквадратичное
за период значение напряжения.

Напряжение
на зажимах источника переменного тока
или катушки индуктивности измеряется
работой электрического поля по перемещению
единичного положительного заряда вдоль
пути, лежащего вне источника или катушки.

Вихревое (непотенциальное) электрическое
поле на этом пути практически отсутствует,
и напряжение равно разности потенциалов.

Электродвижущая
сила (ЭДС) — физическая величина,
характеризующая работу сторонних
(непотенциальных) сил в источниках
постоянного или переменного тока. В
замкнутом проводящем контуре ЭДС равна
работе этих сил по перемещению единичного
положительного заряда вдоль контура.

  • Наименование и
    обозначение производной единицы СИ:
  • международное
    – volt,
    V
  • русское
    – вольт,
    В
  • Выражение через
    основные и производные единицы СИ:
  • 1 V = 1 W / A

Нулевой потенциал и потенциальное поле

Электрическое поле считается потенциальным, значит, работа по перемещению в нем заряда не зависит от траектории и определяется единственно потенциалом. Потенциал – универсальное физическое понятие, часто применяемое. К примеру, для гравитационного поля Земли, происхождение которого поныне необъяснимо. Известно, что массы притягиваются по закону, напоминающему выведенный Шарлем Кулоном.

Зарисовка напряжённости поля

В электрическом поле Земной шар становится началом отсчёта. Нет разницы, относительно чего исчислять потенциал, но люди быстро поняли, что смоляное электричество бьётся, стеклянное кусается током, а грунт не причиняет вреда. Следовательно, в полном соответствии с логикой принят за нуль. В этом плюс: Земля громадная по объёму, на планету стекают без труда гигантские токи, статические и переменные. Доказано, что на теле заряд пытается распределиться взаимно на максимальной дистанции. Что соответствует поверхности планеты. При таком раскладе плотность заряда получается несущественной, много меньше, чем на любом наэлектризованном теле.

На Земле потенциал за редким исключением измеряется относительно грунта, значение называют электрическим напряжением. Из контекста становится понятно, что напряжение бывает положительным и отрицательным. Впрочем, не всегда. На ЛЭП порой считается выгодным использовать схемы с изолированной нейтралью. Тогда потенциал любой точки не считается относительно Земли, отсутствует нейтраль. Это становится возможным в трёхфазных цепях.

На местной подстанции ставят разделительный трансформатор, нейтраль вторичной обмотки которого заземляют, чтобы поставлять потребителям фазное напряжение 220 В, а не линейное. Порой люди наивно думают, что планета единая, следовательно, не нужна нейтраль, ток всё равно потечёт. Но потечёт через грунт, вызывая немалый экономический ущерб и представляя опасность для людей созданием шагового напряжения. Медный нулевой проводник – называли в первой половине XIX века возвратным – имеет малое сопротивление и гарантированно не причинит вреда.

В цепях с изолированной нейтралью потенциал не отсчитывается относительно уровня грунта, а напряжение измеряется между двумя точками. Уместно упомянуть, что по закону Ома ток, протекая через проводник, создаёт разность потенциалов. Поэтому нельзя браться при аварии за контур заземления. Малое сопротивление способно оказаться причиной образования здесь немалой разницы потенциалов. А человек обязан помнить об опасности напряжения прикосновения.

Однако цепи с изолированной нейтралью используются и в целях безопасности

Если напряжение создаётся между двумя точками вторичной обмотки разделительного трансформатора, ток на землю через неосторожно взявшегося за оголённый провод человека не пойдёт – разница потенциалов относительно грунта меньше. Следовательно, разделительный трансформатор становится мерой защиты и часто используется на практике

Эквипотенциальные поверхности

Если предположить, что источником электрополя является точечно заряженная частица (т. е. поле центральное), из этого следует, что все точки пространства, которые находятся от него одинаково далеко, имеют равный потенциал. В пространстве совокупность таких точек образует поверхность шара, а заряд-источник находится в центре сферы.

Однако, если электрополе не имеет централизованного характера, всё равно можно назначить такие поверхности, что пробный заряд, размещённый в любой точке этой поверхности, будет иметь тот же потенциал. Например, в случае однородного поля такой поверхностью является любая плоскость, перпендикулярная линии поля.

Напряжение в цепях трёхфазного тока[ | ]

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки относительно нейтрали, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в 3 {\displaystyle {\sqrt {3}}} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в числителе которой стоит фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли), а в знаменателе — линейное напряжение. Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.