Приставка к мультиметру для измерения индуктивности схема

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Виды, устройство и принцип действия

Всего выделяют два вида датчиков на основе эффекта Холла. Первые – цифровые, вторые – аналоговые. Они значительно отличаются друг от друга в плане конструкции и принципа функционирования.

Цифровые

Цифровые регистры имеют два устойчивых положения: ноль или единица – то есть они срабатывают при определенной величине изменения магнитного поля. В основе таких датчиков лежит устройство под названием триггер Шмитта, которое имеет два устойчивых состояния: логический ноль и логическая единица.

Контроллеры подобного типа делятся на три вида:

  1. Униполярные.
  2. Биполярные.
  3. Омниполярные.

Каждый из этих видов далее будет подробно рассмотрен.

Униполярные

Контроллеры подобного вида работают только в том случае, если к ним прикладывается магнитное поле положительной полярности от южного полюса. Только при этом условии происходит срабатывание и отпускание контроллера.

Биполярные

Эти цифровые датчики работают под действием магнитного поля и южного, и северного полюса. Их особенность состоит в том, что срабатывают они под действием поля от южного полюса, а отпускаются под действием северного полюса.

Омниполярные

Уникальность этих контроллеров Холла состоит в том, что они могут включаться и выключаться под действием поля от любого полюса.

Аналоговые

В отличие от цифровых аналоговые датчики способны выдавать на выходе не два стабильных уровня сигнала, а бесконечное множество. Их принцип работы основан на преобразовании величины индукции поля в напряжение.

Конструкция этих устройств содержит элемент Холла (сам контроллер) и усилитель сигнала.

Разъемные датчики тока

Когда проверяется работоспособность действующего электрооборудования, при осуществлении ремонтных работ на предприятиях, имеющих непрерывные циклы работы, а также в целом ряде подобных случаев необходимы приборы, которые можно установить, не производя разрыв токовых цепей. Специально для этих целей и был разработан данный вид датчика, который собирается и устанавливается на токовой шине. Его важным преимуществом является возможность соблюдения всех требований без влияния на производственный процесс. А благодаря особенностям монтажа он получил название «Разъемный датчик тока». Ведь он не устанавливается где-то на линии, а вставляется в обычную розетку. Поэтому им может пользоваться даже человек, у которого отсутствуют специальные навыки. С этой точки зрения датчик тока является очень полезным.

Измерение тока с помощью эффекта Холла

Тот факт, что эффект Холла зависит от магнитного поля, означает, что его можно использовать в качестве бесконтактной технологии. Таким образом, он не является «навязчивым», в отличие от наиболее распространенного способа измерения тока, который заключается в использовании шунта (низкоомного резистора) и измерении падения напряжения на нем. Использование эффекта Холла для измерения тока по своей природе надежно в приложениях большой мощности, поскольку оно не опирается на потенциал земли в качестве эталона.

Для обычного датчика тока на основе эффекта Холла это означает размещение датчика перпендикулярно магнитному полю и использование концентратора, обычно ферромагнитного сердечника, имеющего форму кольца или квадрата, расположенного вокруг проводника, несущего измеряемый ток (рисунок ниже). Датчик обычно держат в небольшом воздушном зазоре, образованном между двумя концами ферромагнитного сердечника.

С датчиком тока IMC-Холла чувствительный элемент расположен параллельно протекающему току. В этом случае ферромагнитный сердечник не требуется; однако для защиты от перекрестных помех может потребоваться защита. Это означает, что его можно использовать для измерения тока, протекающего по шине или дорожке печатной платы, просто расположив датчик над шиной или дорожкой. Этот тип датчика активируется технологией IMC-Hall с использованием встроенного магнитного концентратора (IMC), разработанного компанией Melexis.

По сути, это магнитное поле, генерируемое током, который обнаруживается благодаря эффекту Холла, а не самим протекающим током.

Спектры измеряемых токов.

К напряжению трехфазных силовых сетей переменного тока обычно предъявляются достаточно жесткие требования – искажения формы напряжения (отличие от синусоидальной формы), как правило, не должны быть более двух процентов. Аналогичные требования обычно предъявляются и к линейности фазового электрического сопротивления машин переменного тока, поэтому в спектре тока типовой машины обычно не бывает сильных гармонических составляющих потребляемого тока, но частотный диапазон, в котором есть информативные составляющие тока, достаточно широк. Так, на рис.1 приведена форма и спектр тока в одной из фаз асинхронного электродвигателя без сильных дефектов. Для наглядности спектр тока по оси ординат приведен в логарифмическом масштабе.

Рис.1.Форма тока, потребляемого асинхронным электродвигателем, и его спектр

В последние годы в качестве приводного электродвигателя все шире используется наиболее дешевый и надежный асинхронный электродвигатель, а для управления частотой его вращения и упрощения пуска используется статический преобразователь частоты питающего напряжения. На вход такого преобразователя подается трехфазное напряжение с частотой 50Гц, а на выходе формируется трехфазное напряжение другой частоты, оптимальной по энергопотреблению агрегата или другим контролируемым параметрам. Естественно, что форма выходного напряжения такого преобразователя, если она жестко не стандартизована, также как и потребляемого электродвигателем тока, существенно отличается от синусоидального, а спектр тока содержит большое количество различных составляющих, как это показано на рис. 2.

Рис.2 Форма и спектр тока асинхронного электродвигателя при использовании статического преобразователя частоты питающего напряжения.

Похожая ситуация складывается и напряжением питания двигателей постоянного тока. Как правило, двигатель постоянного тока питается от трехфазного выпрямителя переменного тока. Если регулирование частоты вращения агрегата организовано так, что выпрямленное напряжение питания не меняется, искажения напряжения питания и потребляемого тока будут минимальными, уложатся в 2% от выпрямленного напряжения (тока якоря) и проявятся, в основном на частоте 300Гц. Но в большинстве практических случаев регулирование частоты вращения двигателя производится статическим регулятором выпрямленного напряжения. Форма тока якоря двигателя при использовании наиболее распространенного тиристорного регулятора напряжения приведена на рис. 3. Там же приведен и спектр тока якоря.

Рис. 3. Форма и спектр тока якоря при питании машины постоянного тока от тиристорного регулятора напряжения.

Сказанное подтверждает необходимость измерения спектра тока, потребляемого электродвигателем, по крайней мере, до 10кГц, при решении задач диагностики, как электропривода, так и приводимого во вращение механизма.

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

https://youtube.com/watch?v=CrhunNQTkwI

https://youtube.com/watch?v=UavDns7RiZg

https://youtube.com/watch?v=ryEyV3cwr3U

Микросхемы TI со встроенным шунтом для измерения тока

В обширном ассортименте продукции компании Texas Instruments (TI) нашлось место и для измерителей тока со встроенным шунтом. Представляем два типа подобных микросхем, каждая из которых предназначена для решения различных специфических задач. Используя встроенный шунт, микросхемы INA250 и INA260 позволяют измерять двунаправленный ток нагрузки со стороны шины питания или шины заземления.

Интеграция в микросхемы прецизионного резистора для контроля тока обеспечивает высокую точность измерения, сравнимую с калиброванной, и минимальную зависимость характеристик от колебаний температуры. Кроме того, обе микросхемы используют оптимизированное 4-точечное подключение токоизмерительного шунта (схема Кельвина).

INA250

Микросхема INA250 является токоизмерительным усилителем с выходным напряжением, пропорциональным измеряемому току. Прецизионный встроенный резисторный шунт позволяет с высокой точностью измерять ток при синфазном напряжении, которое может изменяться от 0 до 36 В независимо от величины напряжения питания микросхемы.

Семейство INA250 доступно с четырьмя типами шкалы выходного напряжения: 200 мВ/A, 500 мВ/A, 800 мВ/A и 2 В/A. Все микросхемы рассчитаны на номинальный ток до 15 А (10 А – при максимальной температуре 125°C). Однополярное напряжение питания для INA250 составляет 2,7…36 В, а максимальный потребляемый ток достигает 300 мкА. Микросхема работает в расширенном температурном диапазоне -40…125°C и выпускается в 16-выводном корпусе типа TSSOP.

Основные характеристики INA250

  • Встроенный прецизионный резисторный шунт сопротивление шунта: 2 мОм
  • допустимая погрешность сопротивления шунта: 0,1% (макс.);
  • номинальный измеряемый ток: до 15 A при температуре -40…85°C;
  • температурный коэффициент: 10 ppm/°C в диапазоне 0…125°C.

Повышенная точность измерения:

  • погрешность коэффициента усиления (шунт и усилитель): 0,3% (макс.);

ток смещения: 50 мА (макс., для INA250A2).
Четыре коэффициента усиления

  • INA250A1: 200 мВ/A;

INA250A2: 500 мВ/A;
INA250A3: 800 мВ/A;
INA250A4: 2 В/A.
Широкий диапазон синфазного сигнала: -0,1…36 В
Рабочий диапазон температур: -40…125°C

INA260

Микросхема INA260 предназначена для контроля тока, мощности и напряжения с использованием встроенного шунтирующего резистора высокой точности. Цифровой выход этого интегрального монитора обеспечивает совместимость с шинами I²C и SMBus.

Микросхема обеспечивает высокую точность измерений тока и мощности в сочетании с возможностью обнаружения превышения тока в режиме синфазных напряжений, уровень которых может изменяться от 0 до 36 В независимо от напряжения питания. У INA260 можно задать до 16 адресов для работы нескольких микросхем на единой шине I²C. Цифровой интерфейс позволяет программировать критические уровни тока, время преобразования и усреднение аналого-цифрового преобразователя (ЦАП). Для упрощения использования измерителя внутренний множитель обеспечивает прямые отсчеты тока в амперах и мощности в ваттах.

Выполненный в 16-ти выводном корпусе TSSOP интегральный измеритель INA260 работает от источника питания напряжением 2,7…5,5 В при среднем потребляемом токе 310 мкА в диапазоне рабочих температур -40…125°C.

Основные характеристики INA260

  • Интегрированный резисторный шунт высокой точности сопротивление шунта: 2 мОм;
  • эквивалентная погрешность: не более 0,1%;
  • номинальный ток: до 15 A при температуре -40…85°C;
  • температурный коэффициент: 10 ppm/°C (0…125°C).

Измеряемое шинное напряжение: 0…36 В
Измерение в цепи между источником питания и нагрузкой или между нагрузкой и общим проводом
Считываемые данные о токе, напряжении и мощности
Повышенная точность

  • системная погрешность усиления: 0,15% (макс.);

ток смещения: 5 мА (макс.).
Настраиваемые функции усреднения
16 программируемых адресов
Напряжение питания: 2,7…5,5 В;
Корпус типа TSSOP, 16 выводов.

Датчик тока на микросхеме ZXCT1009F

Упростить схему активного датчика и увеличить крутизну передаточной характеристики датчика тока можно, применив специализированную микросхему ZXCT1009F.

О возможности применения этой микросхемы для измерения переменного тока было рассказано в . Схема устройства показана на рис. 11. Назначение элементов R1 и С1 такое же, как в ранее описанных устройствах.

Диод VD1 защищает вход микросхемы DA1 от нештатной полярности входного напряжения. Эта микросхема работает как однополупериодный выпрямитель, напряжение на выходе интегрирующей цепи R3C2 будет пропорционально среднему значению тока нагрузки.

Рис. 11. Схема датчика тока на микросхеме ZXCT1009F.

Рис. 12. Печатная плата.

Рис. 13. Размещение деталей на печатной плате.

Детали устройства смонтированы на печатной плате из фольгированного с одной стороны стеклотекстолита, чертёж которой приведён на рис. 12. Расположение элементов показано на рис. 13, а внешний вид варианта смонтированной платы — на рис. 14. Применены элементы для поверх ностного монтажа.

При выборе напряжения питания активных датчиков не следует забывать о так называемом коэффициенте амплитуды Ка (или крест-факторе) потребляемого нагрузкой тока, который характеризует отношение амплитуды потребляемого тока Іа к его действующему (или эффективному) значению Іэф: Ка = Iа/Iэф.

Дело в том, что многие бытовые устройства, питающиеся от сети, имеют встроенный импульсный источник питания с выпрямителем на входе.

Сглаживающий конденсатор выпрямителя заряжается только вблизи максимума сетевого напряжения, и от сети потребляется ток только в эти моменты. Для переменного тока прямоугольной формы Ка = 1, для синусоидального — Ка = 1,41, а для импульсного источника — Кa = 2…4.

Рис. 14. Вид датчика.

Это означает, что в активных датчиках максимальное неискаженное выходное напряжение ииыима,с должно быть больше, чем напряжение Uвых на выходе датчика (см. рис. 1), по крайней мере, в Ка, раз, а напряжение питания — ещё больше.

Например, для датчика на ОУ (двухполупериодный выпрямитель) при Uвых = 2 В и Ка = 2 напряжение питания Uпит >= 4 В для ОУ структуры rail-to-rail или Uпит >= 5…6 В для обычного ОУ.

Поскольку на микросхеме ZXCT1009F собран одполупериодный выпрямитель, при тех же условиях напряжение питания должно быть примерно в три раза больше, чем Uвых. При этом не следует забывать, что для питания самой микросхемы требуется напряжение не менее 1,5…2 В.

Поскольку интегрирующие цепи на выходе датчиков высокоомные, к их выходам следует подключать нагрузку, сопротивление которой, по крайней мере, в десять раз больше сопротивления резистора в интегрирующей цепи.

Каждый из датчиков требует калибровки, которую можно провести с помощью амперметра действующего значения переменного тока, источника переменного напряжения, в качестве которого можно применить вторичную обмотку понижающего трансформатора, включённого в сеть, и мощного переменного резистора.

И. Нечаев, г. Москва. Р-06-19.

Литература:

  1. ZXCT1009. HIGH-SIDE CURRENT MONITOR. diodes.com.
  2. Нечаев И. Микросхема ZXCT1009F и конструкции на её основе. Часть 1. Измерение большого постоянного и переменного токов. Приставка к мультиметру. — Р-11-2018.
  3. Anthony Н. Smith. Full-Wave Active Rectifier Requires No Diodes. — radiolocman.com.

Классификация датчиков

По своей сути каждый датчик является составной частью регулирующих, сигнальных, измерительных и управляющих приборов. С его помощью преобразуется та или иная контролируемая величина в определенный тип сигнала, позволяющий измерять, обрабатывать, регистрировать, передавать и хранить полученную информацию. В некоторых случаях датчик может оказывать воздействие на подконтрольные процессы. Всеми этими качествами в полной мере обладает датчик тока, используемый во многих устройства и микросхемах. Он преобразует воздействие электрического тока в сигналы, удобные для дальнейшего использования.

Датчики, применяемые в различных устройствах, классифицируются в соответствии с определенными признаками. По возможности измерений входных величин, они могут быть: электрическими, пневматическими, датчиками скорости, механических перемещений, давления, ускорения, усилия, температур и других параметров. Среди них измерение электрических и магнитных величин занимает примерно 4%.

Каждый датчик преобразует входную величину в какой-либо выходной параметр. В зависимости от этого, контрольные устройства могут быть неэлектрическими и электрическими.

Среди последних чаще всего встречаются:

  • Датчики постоянного тока
  • Датчики амплитуды переменного тока
  • Датчики сопротивления и другие аналогичные приборы.

Основным достоинством электрических датчиков является возможность передачи информации на определенные расстояния с высокой скоростью. Применение цифрового кода обеспечивает высокую точность, быстродействие и повышенную чувствительность измерительных приборов.

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

Как работают датчики и токовые клещи для измерения постоянного и переменного тока

Для расширения функционала мультиметров, осциллографов и других электроизмерительных инструментов, применяются токовые датчики в форме клещей — токовые клещи. Для проведения измерений клещами, их смыкают в обхват проводника с током, и таким образом, без разрыва цепи и без необходимости врезания в проводник какого бы то ни было шунта, осуществляют замер.

Это просто и удобно. Результат измерения прибор отображает на своей шкале в виде напряжения или тока пропорциональной измеренному току величины. Достоинство метода заключается еще и в том, что прибор может и не иметь достаточно широкого входного диапазона, тогда как датчик — клещи вполне в состоянии свободно принять проводник даже с очень большим током.

Проводник с измеряемым током не только остается целым, но и всегда гальванически изолирован от цепей измерительного прибора. Сам же прибор может иметь входную цепь с очень высоким импедансом и даже быть заземлен. Здесь нет необходимости как-то регулировать или включать и выключать питание цепи, параметры которой измеряются клещами, а значит в работе питаемого оборудования не будет простоев.

Среднеквадратичное значение тока в диапазоне частотных характеристик датчика можно измерить при совместном использовании токового датчика с мультиметром, способным измерять среднеквадратичные значения. В данном случае диапазон будет ограничен возможностями (шкалой) мультиметра. Лучшие результаты достигаются с датчиками обладающими широкой частотной характеристикой, минимальным фазовым сдвигом и высокой точностью.

Для измерения параметров переменного тока используются датчики, работающие по принципу обычного измерительного токового трансформатора. Любой трансформатор имеет первичную и вторичную обмотки, установленные на общем магнитопроводе. Первичное напряжение подается на первичную обмотку, в сердечнике создается переменный магнитный поток, наводящий во вторичной обмотке соответствующую коэффициенту трансформации ЭДС. Токи первичной и вторичной обмоток соотносятся как количества витков во вторичной и первичной обмотках.

Так и работает токовый датчик для измерения переменного тока. Магнитопровод в форме клещей замыкается вокруг проводника. Проводник — это первичная обмотка, состоящая из одного единственного витка, значение тока в котором необходимо узнать.

Ток во вторичной обмотке будет пропорционален току в проводнике и отличаться от него в число раз, равное коэффициенту трансформации, то есть во столько раз, сколько витков во вторичной обмотке. Количество витков во вторичной обмотке датчика обычно 1000, 500 или 100.

Если датчик имеет 1000 витков, то клещи имеют обозначение 1000:1 или 1мА/А — это значит что 1 мА в показаниях прибора тождественен 1А в исследуемом проводнике. Или 1А на приборе — 1000 А в проводнике.

Соотношение может быть в принципе и другим: 3000:5 или 2000:2, в зависимости от назначения прибора. Однако в большинстве случаев клещи работают в паре с обычным мультиметром и соотношение, как правило, 1000:1.

При соотношении 1000:1 или 1мА/А показания прибора будут такими. При входном токе в 700А выходные показания окажутся 700мА, при 300А — 300мА и т. д. Так происходит потому, что выход датчика присоединяется к цифровому мультиметру в режиме измерения переменного тока с выбранным диапазоном значений.

Для определения действующей величины тока в проводнике, показания мультиметра умножаются на коэффициент датчика. Главное — чтобы измерительный прибор имел требуемое входное сопротивление.

Если измерительный прибор имеет вход только по напряжению (вольтметр или осциллограф), то он также может использоваться с токовым датчиком — клещами. Для этого токовый выход датчика необходимо согласовать с входом прибора, применив принцип измерительного трансформатора тока. Тогда показания переменного напряжения будут пропорциональны измеряемому переменному току.

1.1. Измельчение твердого продукта (дробление)

На рисунке 1 показана типовая дробильная установка.


Рисунок 1 — Типовая дробильная установка

Она состоит из:

  • конвейера, который осуществляет подачу сырья;
  • непосредственно самой дробилки.

В обоих случаях применяются электродвигатели. Сырьем для дробилки зачастую является горная порода.

Избыточная подача сырья приводит к перегрузке электродвигателя, вращающего дробилку. Недостаточная подача, в свою очередь, свидетельствует о неэффективном использовании ресурсов имеющегося оборудования, т.к. влечет за собой работу в холостом режиме, а следовательно и негативный экономический эффект. Для достижения наилучшей эффективности процесс подачи материала необходимо автоматизировать.

Схема управления в таком случае достаточно проста: в зависимости от загруженности дробилки регулируется скорость подачи сырья, т. е. конвейера. Это возможно осуществить с помощью преобразователя частоты (ПЧ). Для этого необходимо подключить к ПЧ датчик, который будет являться обратной связью. Этого достаточно для организации самостоятельного узла управления.

Алгоритм работы системы заключается в следующем: сигнал от датчика обратной связи показывает текущий уровень загрузки дробилки. В зависимости от этого, преобразователь частоты будет уменьшать или увеличивать обороты двигателя подающего конвейера.

В качестве датчика обратной связи могут применяться оптические или ультразвуковые датчики (рисунок 2).


Рисунок 2 — Определение уровня в дробилке ультразвуковым датчиком

Датчик производит измерение уровня бесконтактно и передает сигнал на частотный преобразователь. Соответственно, чем выше уровень материала, тем выше нагрузка на двигатель дробилки.

Однако, у таких решений есть несколько недостатков. Если процесс дробления сопровождается образованием пыли, использование оптических датчиков невозможно, так как пыль препятствует прохождению светового луча. Этого недостатка лишены ультразвуковые датчики, которые работают даже при высокой запыленности. Тем не менее, оба описанных метода измерений не учитывают размер фракции горной породы, от которого наиболее зависит нагрузка электродвигателя.

Практика применения

Чаще всего данные изделия используются как измерители в схемах токовых реле, которые управляют режимами работы различного электроприводного оборудования и предохраняют его от экстремальных ситуаций.

Токовые реле способны защитить любое механическое устройство от заклинивания или других условий перегрузки, которые приводят к ощутимому увеличению нагрузки на двигатель. Функционально они определяют уровни тока и выдают выходной сигнал при достижении указанного значения. Такие реле используются для:

  • Сигнала сильноточных условий, например, забитая зёрнами доверху кофемолка;
  • Некоторых слаботочных условий, например, работающий насос при низком уровне воды.

Чтобы удовлетворить требования разнообразного набора приложений, в настоящее время используется блочный принцип компоновки датчиков, включая применение USB-разъёмов, монтаж на DIN-рейку и кольцевые исполнения устройств. Это обеспечивает выполнение следующих функций:

  • Надёжную работу на любых режимах эксплуатации;
  • Возможность применения трансформаторов;
  • Регулировка текущих параметров, которые могут быть фиксированными или регулируемыми;
  • Аналоговый или цифровой выход, включая и вариант с коротким замыканием;
  • Различные исполнения блоков питания.

В качестве примера рассмотрим схему датчика тока для управления работой водяного насоса, обеспечивающего подачу воды в дом.

Кавитация — это разрушительное состояние, вызванное присутствием пузырьков, которые образуются, когда центробежный насос или вертикальный турбинный насос работает с низким уровнем жидкости. Образующиеся пузырьки затем лопаются, что приводит к точечной коррозии и разрушению исполнительного узла насоса. Подобную ситуацию предотвращает токовое реле.

Когда насос работает в нормальном режиме, и жидкость полностью перекрывает его впускное отверстие, двигатель насоса потребляет номинальный рабочий ток. В случае снижения уровня воды потребляемый ток уменьшается. Если кнопка запуска нажата, одновременно включаются стартёр M и таймер TD. Реле CD настроено на максимальный ток, поэтому его контакт при первоначальном запуске двигателя не будет замкнут. При падении силы тока ниже установленного минимума реле включается, а, после истечения времени ожидания TD, включается в его нормально замкнутый контакт. Соответственно контакты CR размыкаются и обесточивают двигатель насоса.

Применение такого детектора исключает автоматический перезапуск насоса, поскольку оператору необходимо убедиться в том, что уровень жидкости перед впускным отверстием достаточен.

Типы датчиков Холла

Датчики эффекта Холла можно разделить на два типа:

  • На основании Вывода
  • На основании операции

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Это интересно: Печка ВАЗ 2110 не греет или не работает: причины и способы решения проблемы

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила эра троники цифровой элек, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида.

Униполярный датчик Холла

Как следует из названия, эти датчики требуют только положительного магнитного поля южного полюса магнита, чтобы активировать, а также отпустить датчик.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.