Бмс схемы подключения

Содержание

Что такое плата балансировки, ее функции

Балансир для аккумуляторов 18650 (BMS – Battery Monitoring System) – система, отслеживающая состояние батареи.

Любой качественный литий ионный источник питания имеет в своей конструкции такой балансир. Сразу стоит обозначить, что большинство неприятностей, связанных с повреждениями батареи, вызваны неправильной эксплуатацией. Вот минимальные требования, необходимые литию: не заряжать и не разряжать выше-ниже определенных значений, не использовать токи, выходящие за пределы рекомендуемых производителем. Плата BMS и нужна, чтобы контролировать все эти моменты.

Функции балансира:

  • защита от превышения отдаваемого тока. Подбирая плату, смотрят, какой максимальный ток выдерживает АКБ. Если ток срабатывания защитной платы превышает значение – смысла в покупке нет. Если в аккумуляторе «банки» включаются параллельно, ток срабатывания нужен не более чем в два раза больше предельного тока для одной «банки». Когда отдаваемый ток выйдет за пределы нормы, батарея отключится от нагрузки;
  • защита от перезаряда. Балансир измеряет напряжение в каждой «банке». Включается балансировка – секции заряжаются до предела – батарея отключается от зарядки;
  • защита от переразряда. Даже если одна «банка» разрядится до минимальных значений, АКБ отключится от нагрузки;
  • защита от перегрева. Плата подразумевает наличие термодатчика, измеряющего нагрев аккумулятора. Чтобы датчик работал, требуется тепловой контакт между ним и хотя бы одной «банкой». Если BMS обнаруживает перегрев, то отключит АКБ от нагрузки или зарядного устройства;
  • балансировка. Если последовательно соединить аккумуляторные батареи, то заряжаться и разряжаться в одно время они будут только при одном условии – у каждой будет одинаковая емкость и внутреннее сопротивление. Но встречается это редко, а даже небольшие отклонения в параметрах со временем приведут к тому, что в каждой «банке» будет разное напряжение. Балансировка и нужна, чтобы выровнять напряжение.

Выделяют пассивную и активную балансировку. Схема проще у первой – устройство включается в работу только под конец зарядки. Те «банки», у которых напряжение достигнуто максимума, отдают часть тока в виде тепла на резисторы. Оставшиеся секции в это время продолжают получать заряд. И так до тех пор, пока каждая «банка» не наберет 100%. По окончании заряда АКБ будет отключена.

Подключение платы балансировки.

Для чего нужен балансир

Литий-ионные батареи могут состоять из разного количества элементов. Они представляют собой последовательно соединенные секции (их количество варьируется от нескольких штук до нескольких десятков).

Известны два варианта зарядки аккумуляторов: последовательный и параллельный. При последовательном способе заряд передается от одного элемента питания к другому. При параллельном питание реализуется для каждого элемента отдельно. Каждая секция использует индивидуальный источник питания и автономные контролирующие устройства.

Последовательный способ зарядки прост, удобен и быстр. Поэтому он применяется чаще всего. Для оптимизации этого процесса используется балансир для Li-ion аккумуляторов.

Базовое условие этого способа – напряжение каждой секции не должно выходить за рамки заданного параметра. Он, в свою очередь, зависит от типа литиевого элемента.

Разные секции не идентичны. Соответственно, достижение требуемого значения напряжения происходит не одновременно. В каких-то секторах оно уже достигло приемлемого максимума (напряжение полностью заряженного литий-ионного аккумулятора — примерно 4,3 В), а в других — только начинает набирать обороты.

Поскольку по достижении максимального значения в одной (любой) части зарядку необходимо прекратить, общая емкость аккумулятора оказывается сниженной. Ведь в других секторах напряжение не будет полным.

Если продолжить зарядку, то возможно вздутие и даже взрыв перезаряженных батарей (профессионалы называют их банками). Чтобы не допустить повышения напряжения при зарядке сверх определенного порога нужен балансир для литиевых аккумуляторов. Когда напряжение секции поднимется до заданного значения, он подключает силовой ключ.

Тот, в свою очередь, немедленно подключит к параллельно заряжаемой секции балластный резистор. Таким образом, пополнение напряжения в данном секторе будет остановлено.

Зарядка оставшихся секторов будет идти своим чередом — до требуемого значения, на которые настроен каждый балансир. Все считается законченным при срабатывании балансиров для литий-ионных аккумуляторов всех секторов.

Таким образом, именно балансиры для зарядки литиевых аккумуляторов обеспечивают безопасность процесса. Благодаря им можно получить одинаковое напряжение в секторах и обеспечить работоспособность всей батареи.

https://youtube.com/watch?v=xuHSvjBg8UQ

Информационный сайт о накопителях энергии

Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.

Что такое система управления батареей (BMS)?

BMS — это электронная плата, устанавливаемая на АКБ для выполнения таких задач:

  1. Контроль зарядки/разрядки и количества циклов зарядки/разрядки.
  2. Отслеживание состояния электронакопителя и его компонентов.
  3. Защита элементов АКБ.
  4. Контроль напряжения, температуры и сопротивления элементов электробатареи.
  5. Распределение токов между компонентами электроаккумулятора по ходу процесса зарядки.
  6. Контроль тока заряда.
  7. Защищённое подключение/отключение нагрузки.
  8. Определение потери ёмкости от дисбаланса.

BMS получает данные и на их основе балансирует заряд компонентов, предохраняет батарею от КЗ, излишнего разряда и излишнего заряда, перегрузки по току, перегрева и переохлаждения. Функционал БМС не только повышает эффективность работы аккумуляторов, но и в значительной степени продлевает срок эксплуатации накопителей. Если АКБ доходит до критического состояния, BMS принимает соответствующее решение: она запрещает использование накопителя в системе, просто отключая его. Есть такие вариации BMS, в которых разработчики организовали запись данных о функционировании электробатареи и их передачу на ПК.

BMS очень важна для такой разновидности АКБ, как литий-железо-фосфатная (обозначается LiFePO4). Эти изделия весомо переигрывают своих Li-ion оппонентов по безопасности, производительности, а также стабильности. Однако у LiFePO4 АКБ есть один недостаток: девайсы восприимчивы к перезаряду, а также к разряду ниже допустимого для них напряжения. Поэтому система управления аккумулятором устанавливается на LiFePO4 в обязательном порядке, так будет максимально снижен риск порчи отдельных ячеек АКБ и полной поломки агрегата.

В идеале, напряжение каждого из компонентов находящегося в составе LiFePO4 аккумулятора, не должно выходить за определённые рамки и оно должно быть у всех составляющих одинаковым. Как обстоят дела на самом деле? Очень редко можно встретить аккумуляторную батарею, у которой все элементы входящие в её состав демонстрируют идеально ровную ёмкость. Думаете различие всего на долю-другую ампер-часов останется незаметным и всё обойдётся? Ошибаетесь! Даже такая мизерная разница, может в дальнейшем обусловить разность напряжения при процессе зарядки/разрядки. Для LiFePO4 эта самая разница может обернуться довольно печальными последствиями.

Если ячейки соединены параллельно, то напряжение на каждой будет находиться почти на одном и том же уровне: те компоненты, которые окажутся более заряженными, смогут тянуть своих менее заряженных коллег. А вот при последовательном подключении, к сожалению, ровного распределения заряда ожидать не приходится. Чем это чревато? А тем, что одни компоненты будут недозаряжаться, а другие наоборот, будут получать избыточный заряд. Не стоит обманываться, если общее напряжение по окончанию зарядки дойдёт практически до идеального показателя.

https://youtube.com/watch?v=Si-Nm4ClEjE

Даже при скромном превышении заряда некоторых элементов аккумуляторной батареи, имеет место деградация: электронакопитель по ходу эксплуатации не сможет отдавать нужную ёмкость и из-за неравномерного распределения заряда, агрегат в ускоренном режиме станет сдавать свои былые позиции и по итогу, дойдёт до полной неработоспособности. Компоненты с самым маленьким уровнем заряда станут просто-напросто слабым звеном аккумуляторной батареи: они будут довольно быстро разряжаться, а вот элементы обладающие большей ёмкостью будут разряжаться только отчасти.

В этом случае помогает балансировка аккумулятора, которую осуществляет BMS. Микросхема тщательно отслеживает чтобы все компоненты АКБ по окончанию зарядного процесса получили равномерное напряжение. Когда зарядное мероприятие подходит к логическому окончанию, БМС осуществляет балансировку посредством шунтирования подзарядившихся компонентов либо же переправляет энергию ячеек с повышенным напряжением, компонентам на которых оно меньше. Блок контроля АКБ, балансируя агрегат и контролируя температурный режим, а также осуществляя ряд других функций, обеспечивает максимально долгий срок эксплуатации батареи.

Балансир для Li-ion аккумуляторов

Основной элемент, обеспечивающий работоспособность Li-ion-батарейки — литий. Он и дал название устройству. Литий-ионные аккумуляторы чрезвычайно востребованы, но весьма требовательны к параметрам зарядного устройства.

Литиевая батарейка: что это

Электроприборы окружают нас повсюду. Они делают нашу жизнь комфортной и позволяют решать многие бытовые и профессиональные задачи. Для того чтобы электрические устройства были полезными и отдавали потребителю рабочие качества, заложенные в них производителем, необходимы надежные элементы питания. Среди них лидируют литий-ионные батарейки. Большая часть их используется в портативной электронике.

Они обеспечивает работоспособность:

  1. компьютерного оборудования;
  2. фотоаппаратов;
  3. медицинских приборов;
  4. современных развивающих игрушек.

Кроме того, литий-ионные аккумуляторы приводят в движение электровелосипеды, электросамокаты, электромобили и так далее. Собранные в мощные батареи, они востребованы в авиатехнической отрасли и даже в военно-промышленном комплексе.

Особенности контроллера для зарядки li-ion аккумулятора 18650

Контроллер для литиевых аккумуляторов 18650 расположен сверху корпуса, чем удлиняет само устройство. Плата расположена впереди отрицательной клеммы, защищая АКБ от перезарядки/переразрядки. Основная страна-производитель – Китай.

Предназначение контролера зарядки

Как только защита будет установлена, корпус помещают в специальную пленку с термоусадкой. Из-за дополнительной защитной конструкции корпус удлиняется и утолщается, в редких случаях – не помещается в гнездо. В случае применения аккумулятора 18650 для создания тока в 12 В с общим контроллером заряда прерыватели не устанавливаются.

Основная функция такой защиты – сохранение работы источника энергии в установленных параметрах.

Виды контроллеров

Контроллеры для li-ion аккумуляторов отличаются ценой, производителем и внутренними элементами.

Самые популярные:

  1. HX-3S-A02 (цена – 150 рублей). Производитель – Китай, внутри чип S-8254AA, который защищает литий-ионные элементы от сильного заряда/разряда, короткого замыкания. К нему можно подключить три АКБ типа 18650 (максимальный ток – 10 А). Размер защиты – 50х16 мм.
  2. FDC-2S-2 (цена – 50 рублей). Производитель – Китай, чип – HY2120, предотвращает сильный заряд/разряд, короткие замыкания. Возможно подключение двух АКБ типа 18650 (максимальный ток – 3А). Параметры защиты – 36х6х1 мм.
  3. HX-2S-01 (цена – 70 рублей). Производство – Китай, чип – HY2120, уберегает от сильного заряда/разряда, короткого замыкания. Подключаются две АКБ типа 18650 (максимальный ток – 3 А). Размер защиты – 36х6х1 мм.
  4. HX-3S-D01(цена – 220 рублей). Производство – Китай, чип S-8254AA, контролирует сильный заряд/разряд, короткое замыкание. К нему можно подсоединить три АКБ типа 18650 (максимальный ток – 20 А). Размер защитной платы – 51х23 мм.
  5. HX-3S-D02 (цена – 200 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. К нему подключаются три АКБ типа 18650 (максимальный ток – 10 А). Размер схемы – 50х16 мм.
  6. HX-4S-A01 (цена – 250 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. Можно подсоединить четыре АКБ типа 18650 (максимальный ток – 6 А). Размер микросхемы – 67х16мм.

Схемы контроллеров

Ошибочно думать, что контроллеры заряда-разряда существуют: разрядом управлять не нужно, ток находится в прямой зависимости от нагрузки. Главное – это контроль за напряжением и температурой, временем завершения заряда. Под таким контроллером подразумевают плату, защищающую АКБ от глубокой зарядки/разрядки.

Схема контроллера литий-ионного аккумулятора

Микросхемы состоят из различных электронных элементов, поэтому имеют вариации:

  1. DW01-Plus. Самая популярная и простая микросхема, находится под самоклейкой с надписями, которой обернут аккумулятор. Плата шестиногая, полевые транзисторы соединены в один корпус восьминогой сборкой. Сопротивление транзисторов создает измерительный шунт: возникает большой порог срабатывания от одного устройства к другому. В полевики встроены паразитные светодиоды, благодаря которым АКБ заряжается даже при срабатывании защиты от глубокой разрядки.
  2. S-8241 Series. Разработчик микросхемы – фирма SEIKO, специализирующаяся на литий-ионных и литий-полимерных аккумуляторах. Защитные ключи срабатывают при 2,3 и 4,35 вольтах и при спаде напряжения на FET1-FET2 до 200 мВ.
  3. LV5114OT. Защитная плата срабатывает при 2,5 и 4,25 вольтах, что предотвращает переразряд/перезаряд.
  4. R5421N Series. Среднее потребление энергии в рабочем состоянии – 3 мкА, в состоянии покоя – 0,3 мкА. Данная микросхема имеет ряд модификаций, которые разнятся величиной напряжения срабатывания при перезаряде.

Практический тест

Это не лабораторный тест, погрешности могут быть большими, но общую картину продемонстрирует. Я буду использовать преобразователь в качестве регулируемого БП, тестер EBD-USB и боевой аккумулятор TrustFire для проверки защиты от КЗ.

Минимальное напряжение:


Уменьшаю напряжение с помощью потенциометра. Защита срабатывает при напряжении 2,7 В. Это не заявленные 2,88 В, но, учитывая возможную погрешность, для аккумуляторов с нижним порогом напряжения 2,75 В подходит.

Максимальная рабочая сила тока:


Максимальная рабочая сила тока составляет 3,6 А. При превышении срабатывает защита. Время срабатывания зависит от нагрева транзистора. Если он горячий, то срабатывает сразу при установке 3,7 А. Если холодный, то через 30 секунд. При токе 4 А защита срабатывает практически сразу в любом случае. Т.е. заявленных 4 А нет, но 3,6 А тоже хорошо.

Температура модуля:


За 5 минут работы при максимальной силе тока транзистор нагрелся до 60 ºC, т.е. лучше не примыкать модуль вплотную к аккумулятору (без прокладки) при монтаже.

Сброс защиты происходит через некоторое время или можно подать напряжение с ЗУ для принудительного сброса.

Защита от КЗ есть… одноразовая :). Подключил свой боевой TrustFire к модулю защиты и замкнул контакты P+, P- через мультиметр. На мультиметре успел мелькнуть ток 14 А, «пшик» произошёл сразу. Сгорел транзистор на плате защиты. При этом плата защиты ток потребителю больше не пропускала, но и не работала по сути больше.

Первым делом встроил один модуль в кейс для установки аккумуляторов 18650 (USB коннектор там просто для удобства, без преобразователя). Обычно я и дети используем его для поделок с помощью мини-дрели.

Join the conversation

Остальные ячейки, обозначенные зеленым цветом в момент остановки процесса заряда сохраняют текущий уровень емкости, а в момент его возобновления продолжают заряжаться. Вот такой аккумулятор мы сегодня собрали и разобрались как его можно зарядить.
Некоторые системы не подключают нагрузку, не дождавшись дозаряда аккумулятора до определённого напряжения после срабатывания триггера по переразряду, то есть недостаточно подзарядить элемент пару минут, чтобы он поработал ещё хоть малое время — обычно необходимо зарядить до номинального напряжения 3. Главное преимущество самостоятельной сборки батарей из отдельных ячеек состоит в возможности получения сборного аккумуляторного комплекта максимально приближенного к запросам пользователя с точки зрения рабочих параметров и емкости.
Поставил печататься на 3D-принтере из ABS и через несколько часов все было готово : Прикручивание всего навесного я решил не доверять шурупам и вплавил в корпус вот такие вставные гаечки М2. Но на длительной дистанции банки, постоянно принимающие наибольший объем энергии, постепенно начнут изнашиваться.
Для проверки я сначала сделал симуляцию этой части схемы: И вот что получил по результатам ее работы: По оси X — время в миллисекундах, по Y — напряжение в вольтах. Ток зарядки пока выставим примерно 55мА, потому как напряжение банок отличается и их нужно правильно сбалансировать. Красный был куплен как дублёр, со временем стал основным — держал до последнего разбора — из 10 банок две уже померли в ноль на тот момент, но аккум шурик крутил! Пробуйте и главное не спешите.
Некоторые модели BMS могут настраиваться под разные типы батарей уровни их напряжения, значения тока, емкость. Балансировка — это метод равномерного распределения заряда между всеми ячейками аккумуляторной батареи, благодаря чему максимально продлевается срок службы аккумулятора. BMS контроллер оснащен еще одной, по мнению многих — самой интересной функцией.

Что являет собой BMS?

Зеленая плата с индикаторами показывала только наличие питания, об окончании зарядки никогда не индицировала — пока оставил ее для той цели, но собираюсь выкинуть ее и воткнуть туда АмперВольтметр куплен, но нет времени ковыряться! Для управления процессом заряда и балансировки был последовательно включен ключ, открытие и закрытие которого осуществлялось по команде, поступающей от BMS. Полный размер Аккум установленный на зарядной базе и подключена балансировка Старый черный аккум, когда окончательно сел, был переделан в адаптер с кабелем и крокодилами для присоединения к автомобильному аккумулятору — поэтому я сначала посчитал что, если двигатель выдержал напряжение 14,2В от заведенного автомобиля, то должен выдержать и 16В — типа всё-равно эти 16 просядут до и будет нормуль!

Нагрузкой является сопротивление 1 Ом. Напряжение на каждой из ячеек, объединенных в литий-железо-фосфатную батарею, должно находиться в определенных пределах и быть равным между собой.

При последовательном же соединении равномерного распредения заряда между ячейками не происходит, в результате чего одни элементы остаются недозаряженными, а другие перезаряжаются. КЗ такой батареи, даже разряженной, может привести к большим неприятностям.
Продолжение сборки аккумулятора (подключение BMS)

https://youtube.com/watch?v=GuybS1PKHjY

Схемы плат защиты литиевого аккумулятора

На рынке представлены следующие балансировочные платы фабричного изготовления:

  1. Устройство на базе стабилизатора LM317 обеспечивает подачу на батареи напряжения 4,2 В.
    В конструкции предусмотрены регулировочные сопротивления, в процессе зарядки работает контрольный светодиод красного цвета. Для подключения устройства используется внешний блок питания, коммутация к портам USB не предусмотрена конструкцией.
  2. Китайские производители массово выпускают балансировочные платы на основе стабилизатора ТР4056, которые дополнительно оснащены защитой от переполюсовки аккумуляторов. Устройство предназначено для подключения к портам USB, предусмотрен регулятор параметров зарядки.
    Оборудование в автоматическом режиме, при достижении заданной емкости производится плавное снижение силы зарядного тока. В конструкции предусмотрен штекер для установки дополнительного температурного сенсора.
  3. Устройство на основе чипа NCP1835 отличается уменьшенными габаритами и универсальностью, допускается коммутация аккумуляторов с различными параметрами. Балансир обеспечивает зарядку сильно разряженных элементов путем подачи тока малой силы, предусмотрена защита от установки батареек (со звуковой индикацией). В конструкции модуля предусмотрен регулятор времени зарядки.
  4. Узел на базе контроллера зарядки S8254AA, оснащенный дополнительной балансировкой для аккумуляторов 18650. Оборудование поддерживает защиту от переразрядки и перезарядки, имеется контроль над коротким замыканием.
    Платы на основе контроллера S8254AA не оснащаются лампами, отображающими статус зарядки. Поставщики выпускают аналогичный блок без балансира, изделие отличается применением гетинакса красного цвета. Детали с балансиром изготовлены на основе гетинакса темно-синего цвета.

https://youtube.com/watch?v=lXKELGFo79o

В цепь включаются сопротивления, которые допускается заменить диодами 1N4007

При использовании диодов учитывается нагрев элементов при работе, при изготовлении монтажной платы принимают во внимание необходимость охлаждения узлов

Для регулировки требуется подать постоянное напряжение 5 В на входы устройства. В цепи предусмотрен резистор, изменяя значение сопротивления, необходимо добиться напряжения 4,2 В на колодках, предназначенных для установки литий-ионных аккумуляторов.

Для подачи питания в рабочем режиме используется трансформатор, напряжение равно суммарному значению подключенных аккумуляторов. На каждый элемент подается запас напряжения в пределах 0,15 В. Например, для зарядки 3 элементов требуется подвести напряжение 3*4,2+3*0,15=13,05 В.

Устройство обеспечивает зарядку батарей до момента достижения напряжения 4,2 В. После фиксации параметра включается стабилитрон, который активирует подачу питания через транзистор к балластным резисторам, имеющим сопротивление 4 Ом. В цепи предусматриваются контрольные светодиоды, которые включаются при подаче питания в балластную цепь.

Упрощенный блок на основе стабилитрона TL431A строится с использованием полупроводникового транзистора, удовлетворяющего параметрам зарядки. Поскольку элемент при работе нагревается, то необходимо предусмотреть охлаждение. В основе выбора типа радиатора лежит расчет по мощности.

https://youtube.com/watch?v=QpO2pQnX-Xg

Например, при напряжении 4,2 В и силе тока 0,5 А расчетная мощность составит 2,1 Вт. При увеличении параметров зарядки мощность возрастает, что вызывает сложности с теплоотводом. В конструкции используется 2 сопротивления, регулирующих пороговое значение напряжения.

Небольшие габариты устройств позволяют закрепить узлы на общей пластине. При монтаже нескольких балансиров требуется обеспечить изоляцию корпусов транзисторов (из-за подачи отрицательного питания от батареи).

Балансировочная плата для литиевых аккумуляторов

При соединении нескольких источников постоянного тока в общую банку по последовательной методике обеспечивается суммирование напряжений. При этом емкость аккумулятора будет определяться элементом с минимальным значением параметра.

Для зарядки устройства используется две методики – последовательная и параллельная. При первом способе осуществляется подача питания от единого источника, напряжение соответствует значению параметра на полностью заряженном аккумуляторе.

Параллельный метод предусматривает независимую зарядку каждого изделия, входящего в аккумуляторную банку. В конструкцию зарядного блока входят не связанные между собой источники питания. Для контроля параметров электрического тока применяются индивидуальные устройства. Зарядные блоки подобной конструкции встречаются редко, для восполнения емкости литиевых аккумуляторов применяется последовательная схема зарядки.

Из-за различных характеристик элементов пороговое значение достигается в разное время.

Пользователь вынужден прекратить зарядку после фиксации допустимого напряжения на первом источнике, при этом остальные компоненты АКБ остаются недозаряженными, что негативно влияет на конечную емкость батареи.

https://youtube.com/watch?v=4S7xEY8RT90

При эксплуатации элемента питания происходит неравномерное снижение напряжения на выводах элементов. Разрядка прекращается в момент фиксации минимально допустимого порога на секции, не получившей необходимого заряда.

Для исключения возможности возникновения ситуации в цепь питания батареи вводится балансировочный блок, который контролирует параметры на каждой секции. При достижении запрограммированного значения происходит параллельная коммутация балластного резистора, отсекающего подачу питания на клеммы секции.

Балластное сопротивление отключает питание в случае превышения силы тока, идущего через резистор, над параметром в цепи питания секции аккумулятора. Остальные компоненты аккумуляторной банки продолжают заряжаться.

По мере фиксации максимального напряжения происходит последовательное отключение цепей питания. После подключения всех имеющихся балластных сопротивлений зарядка прекращается. Напряжение всех секций будет равняться значению параметра, на который отрегулирован балансир.