Амперметр: виды, сфера использования, советы по выбору

Принцип действия

На оси кронштейна располагается якорь из стали и постоянный магнит. Стрелка прибора находится на нуле, когда на якорь воздействует только постоянный магнит.

При подключении прибора к цепи, магнитный поток от протекающего по шине тока тоже начинает воздействовать на якорь, вследствие чего стрелка стремиться отклониться на 90°. Чем выше сила тока, тем сильнее сможет отклониться стрелка – именно этот параметр и замеряет амперметр.

В зависимости от способа отображения результатов измерений различают цифровые (когда результат выводится на дисплей) и аналоговые приборы (результат отображается колебаниями стрелки на шкале).

Разновидности амперметров тока

Существует два типа устройств, для измерения силы тока, два вида амперметров тока.

Тип первый и тип второй.

  • Тип первый — аналоговый (он же стрелочный амперметр).
  • Тип второй — цифровой.

Тип первый — стрелочный амперметр тока, выглядит он вот таким образом:

Система этого амперметра тока магнитоэлектрическая. 

В составе устройства постоянный магнит, внутри которого вращается катушка из тонкой проволоки.

В момент подачи тока катушка направлена на поле при действии момента вращения.

Причём величина момента является пропорциональной силе тока. Имеется в устройстве и специальная пружина, которая в момент подачи тока является неким препятствием для вращающейся катушки. Момент упругости пружины в свою очередь пропорционален углу закручивания.

Измерение силы тока происходит таким образом, что при уравновешивании вышеописанных моментов стрелка и показывает искомое значение, равное силе тока, силе воздействия.

Чтобы увеличить предел измерения необходимо параллельно амперметру установить шунт. Резистор, определённой величины, которая рассчитана заранее. Такое устройство названо — резистор шунтирующий.

Для точных измерений с резистором в цепи необходимо придерживаться простых правил. Если в цепи действует измерительный прибор — вольтметр, то входное сопротивление необходимо делать немного больше у самого прибора. В случае работы с амперметром ситуация другая и входное сопротивление прибора следует сделать меньше. В противном случае, если не придерживаться таких правил измерение окажется неверным, и некорректными окажутся показания амперметра. Вся измерительная техника всегда была разработана с учётом неких особенностей и грамотное и правильное использование только залог успешного измерения и результата в целом.

Плюсы аналогового амперметра:

— не нуждаются в независимом питании;

— удобны в отображении информации;

— имеется винтик, на большинстве моделей, который корректирует точность измерения.

Минус тоже есть, но он всего один:

— небольшая инертность стрелок может заставить несколько секунд ожидать результаты измерений.

Тип второй — амперметр тока цифровой. В его составе АЦП (аналого-цифровой преобразователь).

Именно он преобразует силу тока в данные цифровые, что в дальнейшем можно видеть на дисплее устройства.

Огромное отличие таких видов амперметров только в том, что нет стрелки и нет инертности. Результаты измерения можно видеть сразу на дисплее. Разные виды амперметров тока выводят информацию на экран с различной скоростью. Современные виды к тому же и малогабаритны.

Существуют также виды, которые измеряют силу тока переменного напряжения и измеряющие силу тока постоянного напряжения.

Но это не значит, что при отсутствии амперметра для измерения переменного тока Вы не сможете её измерить.

Измерить можно, и поможет вот такая схема:

Вот схема для измерения силы тока амперметром:

Что измеряют амперметром

Физическая величина амперметра демонстрирует силу тока в цепи. Ампер привязан к международной системе единиц. Начиная с 1948 года, определена его формула. В ней учитывается магнитодвижущая сила плюс проводимость проводников.

Интересная информация! Есть разделение на кратные и дольные единицы. Опираясь на международное бюро мер и весов, амперметр способен показывать значения в декаамперах, гектоамперах, килоамперах и так далее.

Дольные единицы

Сфера применения широка, и электрики обязательно держат прибор под рукой. Цифровые, а также аналоговые модификации востребованы в промышленности. Еще встречаются модификации для потребности народного хозяйства. В энергетической области устройства позволяют определить силу тока на выходе у электротехники.

Строители используют приборы на площадках, чтобы провести проводку в домах и сооружениях. Автотранспорт, как известно, также функционирует на электронике

Устанавливая бортовой компьютер, важно знать силу тока. Отдельное направление – научные институты. Работая с радиоэлектроникой, важно подключать электрооборудование

Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр

Работая с радиоэлектроникой, важно подключать электрооборудование. Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр

Приборы для измерения силы тока

Амперметр – это устройство для определения силы как постоянного, так и переменного тока в электрической цепи. Исходя из предназначения приборов для определенных величин тока, различают амперметры, миллиамперметры и микроамперметры.

В зависимости от принципа действия и особенностей применения, различают следующие виды амперметров. Рассмотрим детально их специфику и основные параметры:

аналоговые амперметры, в которых предусмотрена магнитоэлектрическая система. Они производятся на базе катушки из тонкой проволоки, вращающейся между магнитными полюсами. В процессе прохода тока через катушку она фиксируется под воздействием вращающего момента, значение которого пропорционально величине тока. В устройстве предусмотрена специальная пружина, которая препятствует повороту катушки, а упругость пружины пропорциональна углу вращения. При установлении баланса данные моменты выравниваются, а стрелка устанавливается на значении, пропорциональном величине тока на данный момент.

Преимуществом аналоговых приборов является то, что нет необходимости в обеспечении независимого питания для определения результата, поскольку в процессе измерения используется питание непосредственно электроцепи, которая замеряется. Также плюсом выступает повышенная чувствительность. Среди минусов следует назвать длительное время для фиксации стрелки в устойчивом положении.

электромагнитные – разработаны в виде механизмов с зафиксированной катушкой, по которой проходит ток. Также предусмотрено несколько сердечников на оси. Приборы предназначены для фиксации измерительными щупами постоянного тока. Элементами устройств являются измеритель и шкала с промаркированными делениями.

Несомненными плюсами такого типа приборов является возможность измерения силы переменного и постоянного тока, а также удобство использования. Недостатками считаются низкая чувствительность, вследствие чего они используются в сферах, где нет необходимости в сверхточных показателях;

  • электродинамические приборы – их принцип действия базируется на взаимодействии магнитных полей напряжения, протекающего по зафиксированной и вращающейся катушками. В устройствах применяется одновременное и попеременное включение катушек, использоваться прибор может при повышенных частотах до 200 Гц. Приборы обладают чувствительностью к посторонним магнитным полям, поэтому измерения не отличаются высокой точностью, причем замеры рекомендуется проводить в отдалении от прочих источников магнитного поля;
  • ферродинамические – являются одними из наиболее современных и используемых типов амперметров, поскольку практически не реагируют на прочие магнитные поля и отличаются прочностью. Элементами устройства выступают замкнутый магнитопроводник из ферромагнитного материала, сердечник в основании и зафиксированная катушка. Основная сфера использования приборов такого вида – оборона и комплексы обеспечения безопасности, поскольку они обеспечивают высокую точность полученного результата измерений;
  • цифровые амперметры – современные модернизированные устройства, имеющие высокую популярность благодаря удобству использования и точности показателей. Благодаря устойчивости цифрового мультиметра к внешним условиям, температуре и изменениям давления, его можно использовать в условиях вибрации и тряски. Также они подлежат использованию в горизонтальном и вертикальном положениях, что не отражается на точности результата.

Watch this video on YouTube

Полученные данные в цифровом виде позволяют отслеживать и контролировать показатели автоматически даже при отсутствии оператора.

Разбираясь в вопросе, для чего нужен прибор амперметр, следует отметить, что его ключевой и единственной функцией является измерение силы постоянного и переменного тока на конкретном участке электрической цепи. На основании полученных данных можно делать научные выводы, а на практике приборы применяются для повышения эффективности и производительности различных устройств на основании полученных данных.

Амперметры широко используются на промышленных предприятиях, осуществляющих выработку и распределение электро- и тепловой энергии

Также предназначение прибора немаловажно в сферах:

  • электролаборатории;
  • автомобилестроительная отрасль;
  • точные науки;
  • строительная сфера.

Также приборы широко используются в быту. К примеру, специалисты, занимающиеся ремонтом автомобилей, замеряют при помощи амперметра значения электропотребления различных устройств.

Принцип работы цифрового прибора

Цифровой амперметр постоянного тока позволяет измерить и определить постоянный ток – как отрицательной, так и положительной полярности. На направление тока указывает точка, размещенная в крайнем правом разряде. Удобство применения данного устройства состоит в отсутствии необходимости подключения шунта. Амперметр цифровой постоянного тока может монтировать в источники питания, стойки приборов, стенды, зарядные устройства и прочее. Такой прибор советуют использовать, чтобы контролировать работу двигателей, DС-DС преобразователей, источников питания и инверторов.

Амперметр постоянного тока цифровой включается спустя три минуты после подключения питания. В случае установки в зарядное устройство рекомендуется предварительно к выводам питания амперметра подключить конденсатор 470 mF 25 v. Индикатор не отображает незначащие нули. Учитывая обширный выбор диапазонов, амперметр с успехом функционирует в одном из двадцати вариантов режима работы. При этом каждый режим предполагает применение одного из трех шунтов: на мкА, мА или Амперы.

Советуем изучить — Схемы электроснабжения потребителей второй категории

Предел измерения колеблется в диапазоне 1мкА – 1000А. Для работы следует выбрать один из 60 предложенных пределов измерений.

Как уже было отмечено, каждый режим работает на основе подходящего шунта. Следует помнить, что номинальное напряжение любого шунта не должно превышать 75мВ. В качестве примера можно рассмотреть режим 2, который работает только с шунтами 5мкА, 5мА или 5А. Для программирования режимов применяется пять джамперов.

Перед включением модуля рекомендуется запрограммировать режим его работы. После включения модуль выдаст сведения относительно выбранного режима работы. Если, допустим, выбран режим измерения токов в пределах 25А, то включенный модуль будет мигать несколько раз «25.0», что указывает на режим работы «5». В таком случае необходимо использование одного из шунтов: 25А, 25мкА или 25мА. При выборе недопустимого режима будет мигать значок «Err», указывающий на ошибку.

Как работает цифровой амперметр

Следует помнить, что измерять можно только в одной полярности, если же ток измеряется в обратной полярности, то это будет отображаться, как «000». Для питания модуля предназначен встроенный литиевый аккумулятор CR2032, рассчитанный на двадцать дней бесперебойной работы. К тому же, источником питания может послужить внешняя батарея и любой другой источник с постоянным током 3В. Особенности подключения состоят в том, что внешний источник питания 3В следует подключить плюсом к контакту «3V», а минусом – к «0V».

Еще одним обязательным условием является наличие гальванической развязки для внешнего источника питания от источника, который измеряет ток

Важно не забыть встроенный литиевый элемент при использовании внешнего источника питания. Чтобы сэкономить батарею, измеряя ток в автомобиле, можно воспользоваться реле, которое отключает питание модуля во время выключения зажигания. Сделанные самостоятельно шунты или резисторы можно использовать для малых токов

При этом рекомендуется применять металлопленочные резисторы, которые в меньшей степени зависят от температурного режима. Как правило, в устройстве используют константановую или манганиновую проволоку

Сделанные самостоятельно шунты или резисторы можно использовать для малых токов. При этом рекомендуется применять металлопленочные резисторы, которые в меньшей степени зависят от температурного режима. Как правило, в устройстве используют константановую или манганиновую проволоку.

Измерение тока. Амперметр.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

I = \frac{U}{R} = \frac{12}{100} = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Важным параметром этого прибора является его внутреннее сопротивление r_А

Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:. Советуем изучить — Классификация систем управления по алгоритму функционирования

Советуем изучить — Классификация систем управления по алгоритму функционирования

I = \frac{U}{R_1+r_А}

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

R = \frac{r_А}{n\medspace-\medspace 1}

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

R = \frac{r_А}{n\medspace-\medspace 1}

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

I_А\medspace r_А = I_R\medspace R

Выразим ток шунта через ток амперметра:

I_R = I_А\medspace \frac{r_А}{R}

Измеряемый ток равен:

I = I_R + I_А

Подставим в это уравнение предыдущее выражение для тока шунта:

I = I_А + I_А\medspace \frac{r_А}{R}

Но сопротивление шунта нам также известно (R = \frac{r_А}{n\medspace-\medspace 1}). В итоге мы получаем:

I = I_А\medspace (1 + \frac{r_А\medspace (n\medspace-\medspace 1)}{r_А}\enspace) = I_А\medspace n

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Устройство и подключение шунта

Для подключения амперметра используют стандартный шунт, представляющий собой медную пластину, закрепленную на изоляторе из карболита. На медной пластине с каждой стороны имеется по два винта: потенциальные и токовые зажимы. В комплекте идут заводские изделия, имеющие установленное сопротивление и рассчитанные на определенную силу тока.


аналоговый амперметр

Чтобы правильно включить шунт в цепь измерения, придерживайтесь следующего алгоритма:

  • Выбирать изделие следует с большими показателями предполагаемых значений. Например, если предполагаемая сила тока в проверяемой линии составляет 12–15 A, выбирается изделие, позволяющее проводить замеры до 20 A;
  • Далее подключаются измерительные провода от амперметра к потенциальным зажимам на медной планке;
  • Измеряемая линия обесточивается;
  • Затем отсоедините питающие провода от устройства, на котором нужно проверить потребляемое значение;
  • Шунт включается в разрыв электрической линии: отсоединенные провода подключаются к токовым зажимам.

Теперь включается питание, и снимаются показания с амперметра. После этого линия опять обесточивается, измеряющее устройство отключается, а соединения восстанавливаются.

Виды

В зависимости от способа отображения результатов измерений различают цифровые (когда результат выводится на дисплей) и аналоговые приборы (результат отображается колебаниями стрелки на шкале).

Ферродинамический

Самый точный вид аналоговых амперметров. Устойчив к влиянию магнитного поля окружающих предметов, можно использовать без специальной защиты.

Конструкция представляет собой ферромагнитный провод (замкнутый), плотно зафиксированную катушку и сердечники. Используется в различных отраслях тяжелой и военной промышленности.

Плюсы:

  • точность замеров;
  • легкость в эксплуатации;
  • надежность.

Электромагнитный

Имеет довольно простую конструкцию. Состоит из одного или нескольких сердечников и специального устройства. Точность измерения параметров ниже, чем у остальных видов приборов. Применяются для снятия параметров в стандартных электроустановках переменного тока, у которых частота 50 Гц.

Из плюсов – это универсальный прибор, которым можно измерять силу как переменного, так и постоянного тока.

Термоэлектрический

Устройство замеряет силу тока на основании взаимодействия подвижной катушки и магнитного поля магнита.

Состоит из проводника (магнитоэлектрического механизма), к которому припаяна термопара. Она фиксирует момент, когда механизм нагревается под силой тока, проходящего по проводку. Из-за повышения температуры образуется излучение, которое влияет непосредственно на стрелку прибора – она отклоняется на угол, пропорциональный силе тока.

Используется для измерения постоянного тока в лабораторных условиях и разных сферах промышленности. Более чувствителен, чем электромагнитный.

Плюсы:

  • потребляет мало электричества при использовании;
  • показывает точный результат;
  • высокочувствителен.

Минусы:

  • ограниченная сфера применения;
  • наличие подвижной детали;
  • сложная конструкция.

Электродинамический

В корпусе амперметра находятся две катушки – подвижная и плотно зафиксированная. Используются для измерения силы тока в цепях с частотой до 200 Гц.

Плюсы – это универсальный амперметр, который может работать как с постоянным, так и с переменным током.

Минусы – слишком высокая чувствительность прибора. Поля от находящихся поблизости предметов могут создавать для него существенные помехи. Чтобы получить максимально правдивые показатели, нужно использовать электродинамический амперметр вместе с защитным экраном.

Высокая точность прибора позволяет использовать его для поверки новых амперметров других видов.

Цифровой

Все большей популярности набирают цифровые амперметры. Их широко используют как в быту, так и в разных сферах промышленности. Устройство имеет аналого-цифровой преобразователь (компаратор), который выводит результат замеров на ЖК-дисплей.

Погрешность показателей варьируется от 0,2% до 0,5% в зависимости от типа устройства и производителя. На рынке встречаются устройства, адаптированные для работы в разных сетях.

Плюсы:

  • прост в эксплуатации;
  • компактные размеры;
  • минимальная погрешность;
  • невосприимчивость к вибрациям;
  • результат измерений выводится сразу на экран, без задержки, как в аналоговых устройствах.
  • устойчивость к механическим ударам.

Минусы:

  • нуждается в собственном источнике питания;
  • высокая стоимость относительно аналоговых вариантов.

Цифровые амперметры могут быть разной конструкции – зафиксированные на DIN-рейке либо в щитовом исполнении.

Есть еще один, отдельный вид амперметров – демонстрационное устройство, используемое в классах учебных заведений и лабораториях. Обладает режимом гальванометра и характеризуется широким диапазоном измерений (от 0,91 до 9,99 А).

Схемы и способы подключения

Часто возникает вопрос, как подключать амперметр, последовательно или параллельно. Соединить рассматриваемое устройство в разрыв электроцепи не составит труда. В целях безопасности такая процедура выполняется, когда отключен источник питания. Заранее нужно удостовериться, что максимальный ток не будет превышать допустимые значения прибора. Такие шкалы дублируются в сопроводительной техдокументации. Когда подается питающее напряжение, снимаются показания. Необходимо выждать, когда прекратит колебаться стрелка. Когда она смещается в обратную сторону, то меняется полярность подключения. При чересчур сильном токе используется допшунтирование.

Схема подсоединения приспособления бывает прямой либо косвенной. В первом случае устройство непосредственно подключают в электроцепь меж источником питания и нагрузкой.

До того, как подключить приспособление необходимо учитывать:

  • постоянный либо переменный ток в электросети;
  • соблюдена ли полярность устройства;
  • стрелка приспособления должна располагаться за серединой шкалы;
  • границы измерения максимально возможных скачков тока в схеме;
  • соответствует ли внешняя среда рекомендованным показателям;
  • находится ли место измерений без влияния вибрации.

Подключение устройства

В цепь постоянного тока

Постоянный ток может проходить через разные электросхемы. В качестве примера можно привести всевозможные зарядные устройства, блоки питания. Чтобы ремонтировать подобные устройства, мастер должен иметь понимание, как подключается амперметр в электроцепь.

В домашних условиях такие навыки также не станут лишними. Они помогают человеку, который не слишком увлекается радиоэлектроникой, самому определять, например, время, на которое хватает зарядки батареи от фотоаппарата.

Чтобы провести эксперимент, понадобится в полной мере заряженный аккумулятор с номинальным напряжением, к примеру, в 3,5 В. Кроме того, нужно использовать лампу такого же номинала, чтобы создать последовательную схему:

  • аккумулятор;
  • амперметр;
  • лампочка.

Запись, которая обозначена на измерительном устройстве, фиксируется. К примеру, осветительный прибор будет потреблять электроэнергию мощностью в 150 миллиампер, а батарея имеет вместимость в 1500 миллиампер-часов. Следовательно, она будет работать в течение 10 часов, выдавая ток в 150 мА.

Цепь постоянного тока

К зарядному устройству

Часто возникает вопрос, как правильно подключать амперметр к зарядному устройству. В процессе применения зарядного устройства возникает надобность в измерении силы тока. Подобное даст возможность осуществлять контроль процесса накопления электроэнергии батареей, и избежать перезарядки с недозарядкой. Вследствие этого сроки эксплуатации аккумуляторной батареи существенно увеличатся.

Вам это будет интересно Особенности стрипперов для проводов

Во время работы большого количества технических приспособлений появляется необходимость в контроле силы тока. Стрелки амперметра либо показатели на мониторе дискретного устройства покажут оператору такой физический параметр. Проводимые замеры нужны, чтобы поддержать рабоче состояние и для сигнализации о появлении аварийной ситуации.

Подсоединение к зарядному устройству

Класс точности

Чтобы пользование амперметром было действительно эффективным, следует знать погрешность, с которой он осуществляет измерения. В основные характеристики такого прибора входит понятие «класс точности». Данная величина определяется несколькими погрешностями. А если говорить точнее – их границами. Этот параметр еще часто называют приведенной погрешностью. Согласно этому критерию амперметры, да и другие измерительные устройства, могут быть следующих классов:

  • 0,05;
  • 0,1;
  • 0,2;
  • 0,5;
  • 1;
  • 1,5;
  • 2,5;
  • 4.

Устройства, что относятся к первым 4 классам называют прецизионными или точными. Их показания будут иметь максимальную точность. А вот приборы, что относятся к другим четырем группам, называют техническими. Если же случилось так, что пометки на устройстве нет, то оно считается внеклассным. Это значит, что его погрешность в измерениях будет даже больше 4%.

В случае с амперметрами классы точности предназначены для понимания границ абсолютной погрешности прибора. И это не будет гарантией, что в показания не будут внесены коррективы из-за других факторов, среди которых можно назвать частоту переменного тока, действие магнитных полей или температурных перепадов. Отдельно следует сказать, что маркировка амперметров в вопросе классов точности осуществляется согласно ГОСТ.