Подсветка сабвуфера своими руками

Перепады напряжения

Причины
Скачки напряжения в сети (повышение и понижение) могут быть вызваны:

  • отключением от сети нескольких мощных приборов (резко падает нагрузка, а напряжение резко возрастает);
  • нестабильной работой трансформаторных подстанций;
  • обрывом нуля или ослаблением заземления;
  • авариями;
  • перегрузкой;
  • использованием плохих материалов, некачественным монтажом электрической домовой разводки;
  • сварочными работами.

Что допустимо, а что – нет
Любая услуга должна быть оказана качественно, в том числе и услуга по электроснабжению. Электроснабжающая организация должна обеспечить:

бесперебойное круглосуточное электроснабжение в течение года;

Перерыв в предоставлении коммунальной услуги электроснабжения не допускается, если он может повлечь отключение сетей и оборудования, входящего в состав общего имущества в многоквартирном доме, в том числе насосного оборудования, автоматических устройств технологической защиты и иного оборудования, обеспечивающего безаварийную работу внутридомовых инженерных систем и безопасные условия проживания граждан.

Как возместить ущерб из-за скачка напряжения
При сильном скачке напряжения может “сгореть” бытовая техника. Каждый прибор рассчитан на номинальное напряжение с небольшими отклонениями, а при скачке может произойти пробой изоляции и поломка. Стиральные машины, роутеры, компьютеры и другая электроника — вещи достаточно дорогие, поэтому полезно знать, как действовать, чтобы возместить ущерб.
Первым делом нужно позвонить в аварийно-диспетчерскую службу или напрямую в управляющую организацию, объяснить, что был скачок напряжения и вышла из строя техника, подать заявку на вызов электрика. Когда придут представители УО и электрик, нужно проследить, чтобы был составлен акт о скачке напряжения и о том, какие приборы вышли из строя. Хорошо, если при составлении акта также будет присутствовать представитель электроснабжающей организации.
Затем нужно оценить размер нанесенного ущерба. Для этого вы можете отнести технику в сервисный центр или в специализированную организацию, занимающуюся экспертизой. Специалисты определят причину выхода техники из строя и дадут заключение о ремонтопригодности.
Цена нового прибора, который вы купите взамен вышедшего из строя, если он не подлежит ремонту, или стоимость ремонта прибора будет величиной компенсации. Также вы можете требовать компенсировать затраты на экспертизу, на услуги юриста (если вы обратились к нему для решения данной ситуации), требовать компенсацию морального вреда. Правда в большинстве случаев компенсация затрат на юридические услуги и морального вреда осуществляется только в судебном порядке.
Далее подавайте в энергоснабжающую организацию заявление о компенсации нанесенного ущерба, к заявлению приложите акт и экспертное заключение. Можно обратиться в организацию по защите прав потребителей — там помогут подготовить претензию и правильно оформить требования.
Если электроснабжающая организация не захочет урегулировать ситуацию мирным путем, можете обратиться в Роспотребнадзор, прокуратуру, подать иск в суд.

Как потребитель вы находитесь в слабой позиции, не имея возможности доказать факт перепада напряжения (у вас просто нет нужного для этого измерительного оборудования). ВС РФ постановил, что бремя доказывания в этом случае лежит на поставщике. Электроснабжающая организация должна доказать, что вред имуществу потребителя электроэнергии был причинен не в связи с перепадом напряжения в электрической сети, а по другим причинам.

Кроме компенсации суд взыщет в вашу пользу штраф в размере 50% от суммы компенсации — за несоблюдение в добровольном порядке удовлетворения требований потребителя. Это предусмотрено пунктом 6 статьи 13 Закона РФ от 07.02.1992 № 2300-1 «О защите прав потребителей». Как обезопасить технику во время скачков напряжения
Предсказать исход дела в суде сложно, да и на получение компенсации уходит много времени и сил. Поэтому лучше всего обезопасить технику в своей квартире от перепадов напряжения.
Самые распространенное техническое решение данной проблемы — это установка реле, ИБП (источника бесперебойного питания) или стабилизатора. Выбрать подходящий вариант можно, посмотрев на соответствующих форумах в интернете опыт тех, кто уже установил у себя защиту. Также можно посоветоваться с электриками.

Защита от переполюсовки зарядного устройства своими руками

Вот таким вот получился блок защиты от переполюсовки зарядного устройства.

Используемый полевой транзистор — IRFZ44N (можно заменить любым аналогом). Маломощный транзистор BC239C (или другой n-p-n аналог). Диод — 1N4007.

Шунт использовался от старого китайского мультиметра, защита при таком шунте срабатывает при токе 10А.

Тест с почти максимальной нагрузкой.

Имитация короткого замыкания.

Как видим эта защита зарядного устройства спасает не только от переполюсовки, но и от короткого замыкания или перегрузки. При использовании данной схемы в трансформаторных зарядных устройствах необходимо исключить скачки напряжение и как можно лучше его сгладить.

Демонстрация работы защиты.

Кому интересен вариант печатки защиты от переполюсовки на полевике, плату в формате lay может скачать в конце статьи. В качестве шунтов в ней используются два резистора по 0,1 Ом; 5 Вт (при таких значениях защита срабатывает при токе 11-12 А). При желании можно самостоятельно дополнить плату бузером с генератором или оставить, как есть.

Электросхемы защиты динамиков

Транзисторные схемы защиты динамиков от постоянного напряжения обладают рядом существенных недостатков, поэтому хорошим решением проблемы будет использование схемы на интегральных компараторах. Устройство собрано на одной микросхеме, включающей четыре компаратора, и одном n-p-n транзисторе средней мощности. Контактные группы реле на схеме не показаны, но они включаются в разрыв цепей, соединяющих выходы усилителя звуковой частоты и акустические системы. Четыре диода на входе схемы выполняют защиту схемы от броска напряжения в результате неисправности усилителя звуковой частоты. Резистор R8 позволяет установить порог срабатывания от 0 до ± 1,75 V.

В схеме применены двойные интегрирующие RC цепи, поскольку одиночные цепи работают некорректно. С увеличением ёмкости конденсатора, время срабатывания увеличивается, а уменьшение ёмкости приводит к ошибочным срабатываниям на больших уровнях громкости. Данное схемное решение позволяет использовать устройство на усилителях с киловаттной мощностью. Гарантированное время срабатывания устройства не превышает 75-80 мсек. Для обеспечения задержки подключения акустических систем к выходу усилителя используется конденсатор С6. При указанной ёмкости время задержки включения составляет 2 секунды.

Как уменьшить коэффициент нелинейных искажений в схемах защиты АС

Известно, что контактные группы электромеханических реле в схемах защиты акустических систем, с помощью которых осуществляется подключение/отключение последних к выходу УНЧ, значительно увеличивают коэффициент нелинейных искажений воспроизводимого аудиосигнала. Уменьшить нелинейные искажения, возникающие в системах защиты АС, можно различными способами, однако все они приводят к усложнению их электрических схем. Так, радиолюбители из Японии предложили защитить акустику от воздействия постоянного напряжения на выходе УНЧ путем устранения возможности его появления на входе последнего.

Интеграторы входного/выходного напряжения

На выходе современных усилителей достаточно часто используются интеграторы, которые следят как за выходным, так и за входным напряжением, компенсируя возникающие изменения смещением режимов работы входных каскадов. Компенсация обеспечивается включением контактов реле в цепь общей отрицательной обратной связи (ОООС) по переменному току. При этом даже в случаях, когда контакты реле разомкнуты, интегратор обеспечивает наличие обратной связи по постоянному току, что дает возможность УНЧ работать в штатном режиме.

На примере усилителя звука в авто, собранного на китайской микросхеме LM3886 видно, что и наличие интегратора необязательно. Ведь если громкоговорители не подключены, то цепь ОООС замыкается через резистор R1 и контакты реле К1.1. При этом источник тока на транзисторе Т1 выключен, и микросхема переведена в режим mute. А при подсоединении АС контакты К1.2 переключаются, и цепь ОООС замыкается через резистор R2. В результате источник тока включается, микросхема переводится в рабочий режим, а нелинейность контактных групп реле компенсируется за счет включения их в цепь ОООС.

На заметку! Для большей гарантии в схему введен конденсатор С2, емкость которого достаточна для того, чтобы задержать запуск микросхемы на 0,5-1 сек, что в свою очередь позволит обеспечить надежное срабатывание реле. В результате при включении УНЧ пользователь не услышит в динамиках ни щелчков, ни каких-либо других посторонних звуков.

Симисторные блоки

Радиолюбители, обладающие глубокими знаниями в радиотехнике и имеющие опыт самостоятельного конструирования звуковоспроизводящей аппаратуры класса Hi-End, могут попробовать уменьшить нелинейные искажения, вносимые узлами защиты АС, путем замены механических контактов в сильноточных цепях электронными ключами, собранными на основе оптотиристоров (симисторов). Однако схемы симисторных блоков защиты, одна из которых показана на рис. отличаются повышенной сложностью, а собранные узлы требуют тщательной настройки.

Схема защиты АС с применением резисторнорго оптрона

Предлагаемое устройство (рис.4)

Рис. 4. Принципиальная схема защиты акустических систем с применением резисторнорго оптрона.

обеспечивает защиту акусических систем (АС) от повреждения при появлении на выходах стереофонического усилителя постоянного напряжения положительной или отрицательной полярности.

Функции исполнительного элемента защиты выполняет резисторный оптрон U1. Работает он следующим образом. При появлении отрицательного или положительного постоянного напряжения на любом из выходных усилителей звуковой частоты (УЗЧ) через опрон начинает протекать входной ток и сопротивление его резистора резко уменьшается.

Как только величина постоянного напряжения достигнет 3-4 В (в зависимости от экземпляра оптрона), сопротивление это становится столь малым, что транзисторы VT1, VT2 закрываются, обмотка реле К1 обесточиваются и его контакты К1.1, К1.2 отключают АС от УЗЧ.

Стабилитроны VD1, VD2 ограничивают входной ток оптрона величиной 18 мА. Поскольку для стабилитронов Д815А допускается разброс напряжения стабилизации 15%, необходимо подобрать такие экземпляры, чтобы напряжение прикладываемое к светоизлучателю оптрона не превышало 5,5 В.

Дроссели L1, L2 ограничивают переменную составляющую входного тока оптрона до величины исключающей возможность срабатывания защиты. Они выполнены на магнитопроводах ШЛ12*12 и содержат по 1200 витков провода ПЭЛ-0,23. активное сопротивление каждого дросселя 36 Ом.

За счёт большого времени зарядки конденсатора С1 через резистор R1 обеспечивается задержка открывания транзисторов VT1, VT2, срабатывания реле К1 и подключения АС к усилителю.

В результате переходных процессов, возникающие в усилителе после его включения, затухают раньше, чем устройство подключит АС, поэтому щелчок в них не прослушивается.

При включении питания усилителя выключателем 8В1 контакты 1 и 4 последнего замыкаются, вызывая мгновенное закрывание транзисторов VT1, VT2. Естественно АС открывается от усилителя до начала в нём переходных процессов и щелчок в громкоговорителе также не будет слышен.

Устройство защиты АС питается от 2-хполярного источника питания усилителя мощности. При выборе элементов VT1, VT2, C1, R2, K1 следует учитывать величину напряжения источника.

В изготовленном автором экземпляре использовано реле РСМ-1, паспорт Ю-171.81.37. Можно применить и другое подходящее по напряжению и току срабатывания (он не должен превышать 100 мА) реле.

При использовании реле РЭС-9, РЭС-22 устройство защиты можно дополнить системой сигнализации его срабатывания.(рис.5)

Рис. 5. Схема дополнения устройства защиты АС световой сигнализацией.

Описанное устройство разрабатывалось для конкретного усилителя с напряжением питания равным плюс-минус 15 В. В этом случае при появлении на одном из выходов усилителя максимальное напряжение, тепловая мощность, выделяемая на дросселях L1 или L2, не превышает 3 Вт, что исключает его значительный перегрев за время в течении которого может быть сделан вывод о неисправности усилителя мощности (УМ) и принято решение о его выключении.

РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:

Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.

Originally posted 2018-11-23 07:09:50. Republished by Blog Post Promoter

Проблема в сложности АСУ ТП или в интеграторах?

Какие требования предъявляет проблематика защиты АСУ ТП к интеграторам И Б? На мой взгляд, требуется сочетание опыта в сфере защиты информации и опыта реализации проектов по созданию инфраструктуры АСУ ТП. Необходимо знание специфики работы промышленных систем и особенностей работы сетевых протоколов АСУ ТП, умение ориентироваться в рекомендациях отечественных регуляторов и западных стандартов. Поэтому крайне желательно наличие среди специалистов интегратора как инженеров по АСУ ТП, так и специалистов по ИБ (такое сочетание, как инженер АСУ ТП и специалист И Б, в одном лице — достаточно редкое явление).

Подход к обеспечению ИБ в любой отрасли должен быть комплексным, и защита АСУ ТП не является исключением. Должна быть проведена оценка угроз ИБ. разработаны правила политики безопасности и т.д. Если же говорить о технических аспектах защиты, то. как известно, АСУ ТП логически разделяют на три уровня:
• верхний уровень, или уровень визуализации, диспетчеризации и сбора данных;
• средний уровень, или уровень контроллеров;
• нижний уровень, или уровень контрольно-измерительного оборудования.

В действительности далеко не во всех проектных организациях есть инженеры по системам АСУ ТП, а также имеется опыт реализации проектов по защите АСУ ТП. Также в проектных организациях не часто встречаются выделенные подразделения безопасности АСУ ТП, специализирующиеся на изучении проблемы и наращивании компетенций в данной области. При этом наблюдается позиционирование практически всех системных интеграторов как обладателей экспертизы в области защиты АСУ ТП.

Если говорить о существующем сегодня подходе к защите АСУ ТП, то он во многом перенесен из других отраслей. Как правило, это защита на сетевом (IP) уровне, с хорошо знакомыми интеграторам средствами защиты и организационными мерами. Отчасти в этом есть здравый смысл, тем более что тенденция развития систем АСУ ТП активно смещается к использованию стека протоколов TCP/IP и к стандартным ОС, что добавляет классические сетевые угрозы ИБ. Но в целом такой подход больше похож на «делаем что умеем». Зачастую не выполняется даже комплекс банальных мер защиты в самих сегментах АСУ ТП. Интеграторы и владельцы подчас боятся затрагивать сегмент АСУ ТП, особенно на его нижних уровнях. Учитывая, что в нем основной целью злоумышленников является контрольно-измерительная информация, данный подход, мягко говоря, не эффективен. Также не всегда возможна реализация рекомендаций отечественных регуляторов и западных стандартов без ущерба нормальному функционированию систем АСУ ТП.

К примеру, полная изоляция сегментов АСУ ТП подчас технически невозможна без ущерба функциональности системы, но в некоторых случаях регуляторы предъявляют такие требования к конкретным владельцам КСИИ.

Находить изящное, не конфликтующее и действительно функциональное решение в таких условиях является непростой задачей для интегратора при защите АСУ ТП.

Собираем короб для сабвуфера своими руками

Можно приступать к сборке. Мы используем 12-ти дюймовый динамик Lanzar VW-124.

Его диаметр 30 см, и первое что нужно сделать это вырезать отверстие под динамик. Минимальное расстояние от центра диффузора до стенки сабвуфера — 20 см. Мы отмеряли по 23 см (20 см + 3 см ширина фанеры) от края панели и прорезали отверстие електролобзиком. Далее вырезаем отверстие под фазоинверторную щель, в нашем примере она имеет размер 35*5 см.

Вместо щели можно использовать классический воздуховод — трубку. Теперь собираем фазоинверторную щель и крепим ее к передней панели сабвуфера. Проходим по стыкам жидкими гвоздями и закручиваем саморезами.

↑ Модернизированная схема устройства защиты акустических систем

Схема, представленная на рис. 2 проста и надежна, проверена во многих конструкциях, но смущают два момента:• транзисторы VT2, VT3 обнаружителя постоянного напряжения на выходе усилителя работают в режиме с «висячей» базой;• схема может подвести при возникновении на выходах неисправного стереофонического УМЗЧ равных по модулю двухполярных напряжений.Решение проблемы заимствовано из модуля защиты акустических систем 20 — ваттного усилителя класса «А», опубликованного в английском журнале «Everyday Practical Electronics» .Модернизированная схема устройства защиты акустических систем показана на рис. 5.Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только меценатам и полноправным членам сообщества. Читай условия доступа!Предлагаемое устройство может быть использовано как для настоящего проекта, так и для самостоятельного конструирования усилителей звуковых частот.Достоинства:• простота и надежность;• практически полное отсутствие ложных срабатываний;• универсальность применения.Недостатки:• Отсутствует схема отключения акустических систем при пропадании питания.Этот недостаток был принесен в угоду простоте и надежности устройства.В схеме защиты установлены пассивные инфразвуковые фильтры нижних частот второго порядка (соответственно C3, C5, R10, R12 и C4, C6, R11, R13) и сенсоры аварийного постоянного напряжения на выходе усилителя (VT2, VT4, VT6 и VT3, VT5, VT7). При напряжении любой полярности более 1,5 В открывается соответствующий ключ (VT2 или VT3 для положительной полярности постоянного напряжения и VT4, VT6 или VT5, VT7 – отрицательной). При аварии база составного транзистора VT8, управляющего последовательно включенными электромагнитным реле К1 и К2, через низкоомный антизвоновый резистор R5 надежно соединяется с общим проводом, размыкая соединение выходов акустических систем через контакты реле.Интегрирующая цепь R1, C2 в базовой цепи транзистора VT1 обеспечивает задержку подключения акустических систем при включении питания (на время 1,8 с), тем самым предотвращается проникновение в акустическую систему помех, вызванных переходными процессами в усилителе.Схема защиты универсальна и может использоваться с другими УМЗЧ. В таблице, размещенной в правом верхнем углу схемы рис. 5 указаны номиналы R6, R7, которые необходимо изменить в соответствии с напряжением питания Uп усилителя.Технические характеристики:Напряжение питания, В=+25…45Время задержки включения, с=1,8Порог срабатывания защиты, В=более ±1,5Выходной ток для питания реле, мА=до 100Размеры печатной платы, мм=75х75Детали модернизированной схемы устройства защиты акустических систем. Показать / Скрыть текст

Описание схемы и журнала

Далее я приведу дословное описание из журнала радио, там все изложено кратко и понятно.

Принципиальная схема устройства задержки включения и защиты АС показана на рисунке выше. Оно состоит из входного ФНЧ R1 R2C1, реле времени на транзисторе VT1 и элементах R1-R4, С1 и ключа на транзисторе VT2.

В момент включения питания конденсатор С1 начинает заряжаться через резисторы R1, R2. В течение времени его зарядки транзистор VT1 будет открыт, VT2 закрыт и ток через обмотку реле не потечет.

Резистор R3 устраняет влияние базового тока транзистора VT1 на зарядку конденсатора и увеличивает положительный порог срабатывания устройства защиты.

Когда конденсатор зарядится, напряжение на базе транзистора VT1 упадет и он закроется, а связанный с ним ключевой транзистор VT2 откроется и через обмотку реле К1 по течет ток.

Реле сработает, и его замкнувшиеся контакты К1.1 и К1.2 подключат громкоговорители к усилителю. Задержка включения равна примерно 4 с.

Если на каком-то из выходов усилителя появится постоянное напряжение положительной полярности, это приведет к частичной разрядке конденсатора С1, открыванию транзистора VT1 и закрыванию транзистора VT2. В результате ток через обмотку реле прекратится и его контакты отключат громкоговорители от усилителей.

Если же на выходах последних появится постоянное напряжение отрицательной полярности, то оно непосредственно через диод VD1 поступит на базу транзистора VT2, закроет его и таким образом обесточит реле К1, контакты К1.1, К1.2 которого разомкнутся и снова отключат громкоговорители от усилителя.

Диоды VD1-VD2 ограничивают максимальное отрицательное напряжение на базе входного транзистора VT1 на уровне 1,3 В. Хотя и в режиме защиты громкоговорителей, и в режиме задержки их включения конденсатор С1 заряжается через одни и те же цепи, время срабатывания защиты на порядок меньше, поскольку для этого конденсатор должен изменить свой потенциал всего на несколько вольт. Пороги срабатывания защиты составляют не более ±4 В.

Правильно изготовленное устройство начинает работать сразу и настройки не требует. Диоды можно применить любые кремниевые. Остальные элементы желательно применить те, которые указаны в схеме. Реле К1— РЭС-9, паспорт РС4.524.200 с сопротивлением обмотки примерно 400 Ом.

Подойдет и любое другое реле, срабатывающее при выбранном напряжении питания, но в этом случае нужно подобрать резистор R4, от которого зависит отрицательный порог срабатывания защиты.

Устройство работоспособно при изменении напряжения питания в пределах 20…30 В. При другом напряжении питания нужно будет изменить сопротивление резистора R4. Недостаток этого устройства — необходимость питания его от источника с пульсациями не более 1 В, иначе возможны ложные срабатывания.

Испытания защиты

Устройство для защиты от выхода из строя динамиков акустических систем

Часто, при включении усилителя, мы слышим неприятный «хлопок» в динамиках своей акустики. Если регулятор громкости был близок к максимуму громкости, то мы рискуем «спалить» динамики в своих АС. Для того, чтобы защитить динамики и собственные уши от «хлопков» переходных процессов в момент включения, необходимо либо принять специфические решения в схемотехнике самого выходного каскада усилителя, либо просто обеспечить подключение акустических систем к выходу усилителя с небольшой задержкой, достаточной для бесшумного пуска усилка…

Предлагаемое устройство обеспечивает задержку по времени в момент включения усилителя (время задержки регулируется от 1 до 6 секунд) и обеспечивает защиту дорогостоящих динамиков при выходе из строя — пробое транзисторов выходного каскада или специализированных микросхем — аудио усилителей. В случае пробоя в выходном каскаде акустические системы будут мгновенно отключены, останутся целыми невредимыми.

Данное устройство защиты может использоваться совместно с любым стерео усилителем мощности с напряжениями питания выходного каскада до ±50В. Само устройство питается от однополярного источника питания напряжением 12В. Защитное устройство собрано на плате размерами 70х45 мм.

Подключение проводов от усилителя, к разъёмам подключения АС и к источнику питания осуществляется при помощи винтовых клемм установленных на плате. Максимальный ток, коммутируемый реле составляет 10А. По заказу возможно изготовление устройств защиты на токи до 30А. Данным устройством можно дооборудовать любой существующий усилитель либо применить в «новострое».

Стоимость собранного и проверенного устройства: 160
грн.

Стоимость набора для сборки: 120
грн.

Стоимость печатной платы с маской и маркировкой: 55
грн.

На фото выше то, что получилось в итоге. Чем хороша качественная аппаратура, в том числе аудио усилители, так это наличием всякого рода дополнительных узлов, которые помогают сохранить жизнь отдельным схемам внутри усилителя, а также подключаемым к усилителю узлам

Летом в порыве ностальгии я собрал себе простенький, но тем не менее хорошо звучащий усилитель . И так как прибор ручной работы, то захотелось в него добавить блок защиты АС от внезапных проблем внутри усилителя. У нас же не военная приемка. Так что защита может пригодится =)

Например, вдруг какой-либо канал усилителя выйдет из строя и вместо переменного напряжения у него на выходе появится большое постоянное. От которого АС сначала чихнет, а потом выплюнет диффузор далеко за пределы своей коробки.

Работает она просто. Во-первых, задерживает подключение АС к усилителю. Благодаря этому нет щелчков в АС при включении усилителя. Во-вторых, отключает АС от усилителя, если на его выходе появляется постоянное напряжение большее +/- 1.5 В

Я немного подредактировал исходную ПП для своих нужд и целей. Но в целом использовал, что нашел в сети. Спасибо нашему радиолюбительскому миру, жить в котором с появлением интернета стало значительно лучше и интересней =)

При сборке использовались вперемешку импортные и отечественные компоненты. Я так думаю, что беды в этом никакой. Я его слепил из того, что было. Покупал разве что рэлюшки.

За 8 месяцев активной, ежедневной эксплуатации усилитель (вместе с защитой) показали себя прекрасно. Конечно я не выжимал все 70Вт с каждого канала (в домашних условиях даже 10 Вт уже достаточно громко, а на 20-30Вт соседи готовы застучать в стеночку).

Итого

постоянных напряжений

Кроме того (что используется в ряде усилителей) можно управлять подключением к выходу усилителя одной или несколькими пар АС с помощью переключателя на лицевой панели усилителя, при этом не надо пропускать сильноточные сигнальные цепи через данный переключатель.

Данный проект защиты акустики повзаимствован на одном из португальских сайтов. Кроме защиты от постоянки блок обеспечивает задержку подключения колонок к выходу усилителя мощности примерно от 3 до 10 секунд, устраняя при этом щелчки при включении питания усилителя. Принципиальная схема:

В схеме применены реле на напряжение 12 Вольт с одной группой переключающихся контактов, способных держать ток 6…8 Ампер.

В статье оригинале были приведены следующие изображения печатной платы:

И вид платы PCB формата:

Используя данные изображения мы нарисовали плату защиты в программе Sprint Layout. LAY6 формат выглядит так:

Фото-вид печатной платы защиты акустики LAY6 формата:

Фольгированный стеклотекстолит односторонний. Размер платы мы чуток уменьшили, теперь он стал 45 х 75 мм.

В качестве блока питания схемы применен обычный параметрический стабилизатор, напряжение стабилизации 12 Вольт. Схема показана ниже:

Надеемся для вас не составит труда расчитать номинал токоограничивающего резистора для стабилитрона, на схеме он указан стрелкой. Его номинал будет зависеть от того, какое напряжение у вас будет после диодного моста. Так же БП можно реализовать на LM7812.

Подключение блока защиты и акустики к усилителю мощности показано на следующем изображении:

Список элементов схемы блока защиты акустики:

Реле 12 Вольт — 2 шт. Транзисторы 2SC945 — 2 шт. Транзистор 2SC9013 – 1 шт. Диоды 1N4007 – 5 шт. Электролитические конденсаторы 220 uF/ 50V – 2 шт. Резисторы 10 кОм – 4 шт. Резистор 1 кОм – 1 шт. Резистор 39 кОм – 1 шт. Разъемы 2 Pin – по усмотрению Подстроечный резистор 220…500 кОм – 1 шт. Стабилитрон 12 Вольт 1 Ватт – 1 шт. (например импортный 1N4742A)

Плата блока защиты акустики в сборе:

Ссылка на скачивание архива со схемой и печатной платой LAY6 формата появится на этой же странице после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,3 Mb.