Билет №15. электризация тел. два вида электрических зарядов. взаимодействие зарядов. закон сохранения электрического заряда

Краткая история электрического заряда

Еще со времен античной Греции известно, что если потереть кожу о янтарь, то он приобретает способность притягивать к себе легкие тела, например, солому или перья птиц. Это открытие принадлежит греческому философу Фалесу Милетскому, который жил 2500 лет назад.

В 1600 году английский медик Уильям Гилберт заметил, что многие материалы ведут себя подобно янтарю, если их потереть. Слово «янтарь» в древнегреческом языке звучит как «электрон». Гилберт стал использовать этот термин для всех подобных явлений. Позже появились другие термины, такие как «электричество» и «электрический заряд». В своих работах Гилберт также смог различить магнитные и электрические явления.

Открытие существования притяжения и отталкивания между электрически заряженными телами принадлежит физику Стефану Грею. Первым ученым, который предположил существование двух видов электрических зарядов, был французский химик и физик Шарль Франсуа Дюфе. Явление электрического заряда также подробно исследовал Бенджамин Франклин. В конце XVIII века французский физик Шарль Огюстен де Кулон открыл свой знаменитый закон.

Тем не менее все указанные наблюдения смогли оформиться в стройную теорию электричества только к середине XIX века

Здесь следует отметить важность работ Майкла Фарадея по изучению процессов электролиза и Джеймса Максвелла, который полностью описал электромагнитные феномены

Современные представления о природе электричества и дискретном электрическом заряде обязаны своим существованием работам Джозефа Томсона, который открыл электрон, и Роберта Милликена, который измерил его заряд.

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​ \( C \) ​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Формула для вычисления электроемкости:

где ​ \( q \) ​ – заряд проводника, ​ \( \varphi \) ​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

где ​ \( q \) ​ – модуль заряда одной из обкладок, ​ \( U \) ​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​ \( S \) ​, находящиеся на расстоянии ​ \( d \) ​ друг от друга.

Электроемкость плоского конденсатора:

где ​ \( \varepsilon \) ​ – диэлектрическая проницаемость вещества между обкладками, \( \varepsilon_0 \) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Величина, обратная общей емкости:

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно! Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости

Применение конденсаторов Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Предыстория кулоновского открытия

Ещё в VII веке до н. э

древнегреческий философ Фалес из Милета обратил внимание на свойство янтаря, натёртого шерстью, притягивать лёгкие предметы. В 1600 году Уильям Гилберт, придворный врач английской королевы Елизаветы I, ввёл термин «электричество», когда изучал электромагнитные явления

В конце XVII века инженер из Магдебурга Отто фон Герике обнаружил эффект отталкивания наэлектризованных тел. В 1746 году нидерландский физик П. ван Мушенбрук сконструировал «лейденскую банку» — прообраз современного радиотехнического конденсатора.

В России изучением атмосферного электричества занимались М. В. Ломоносов и Г. В. Рихман. Американец Б. Франклин в 1747 году создаёт первую теорию, описывающую элементарные свойства электрических зарядов. С середины XVIII столетия исследователи вплотную подходят к обнаружению зависимости силы, действующей между заряженными телами, от расстояния между ними. Учёные, работы которых предшествовали открытию Кулона:

  • В 1759 году профессор Ф. Эппиус из Академии наук в Санкт-Петербурге высказал гипотезу об обратно пропорциональной зависимости электрической силы от расстояния.
  • Швейцарский математик и механик Д. Бернулли установил закон квадратичности с помощью электрометра в 1760 году.
  • В 1767 году англичанин Дж. Пристли высказал мнение, что электрическое притяжение предметов подчиняется закону, аналогичному закону всемирного тяготения.
  • Физик из Эдинбурга Д. Робисон в 1769 году установил, что заряженные электричеством шары взаимодействуют между собой. При этом предметы с одноимённым зарядом отталкиваются, а тела с разноимёнными зарядами двигаются навстречу друг другу.

Способы передачи электрического заряда и электризация

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

  • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
  • Трение изолятора о другой материал.
  • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
  • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
  • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
  • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

Одноименный заряд

Одноименные заряды отталкиваются, следовательно, для сжатия пружины потребуется больший расход анергии.

Одноименные заряды отталкиваются, а разноименные притягиваются.

Одноименные заряды отталкиваются, разноименные — притягиваются.

Одноименные заряды отталкиваются, и поэтому светящееся пятно на экране взлетает внезапно вверх. Можно сказать и иначе: электроны чувствуют поле и отвечают отклонением вверх. Затем переключим напряжение и зарядим отрицательно уже верхнюю пластину. Световое пятно на экране опустится вниз, показывая, что электроны пучка отталкиваются электронами верхней пластины. Иначе говоря, электроны ответили на изменение направления поля.

Одноименные заряды отталкиваются, а разноименные притягиваются.

Одноименные заряды отталкиваются, разноименные — притягиваются.

Одноименные заряды отталкиваются друг от друга, а разноименные притягиваются. В международной системе единиц СИ единицей количества электричества является кулон, определяемый как количество электричества, протекающего через сечение проводника за 1 с, если по проводнику течет неизменяющийся ток силой в 1 А.

Одноименные заряды ( оба положительные или оба отрицательные) взаимно отталкиваются, а разноименные взаимно притягиваются. В отличие от нейтральных частиц и тел электрические заряды создают вокруг себя собственное электрическое поле и взаимодействуют с внешним ( посторонним) электрическим полем. Электрическое поле — пространство, в котором проявляется действие электрических сил.

Одноименные заряды гранул препятствуют сближению ми целл при их броуновском движении, уменьшая тем самым воз можность слипания частиц в более крупные агрегаты.

Одноименные заряды гранул препятствуют сближению мицелл при их броуновском движении, уменьшая тем самым возможность слипания частиц в более крупные агрегаты.

Одноименный заряд реагирующих частиц затрудняет их сближение и может обусловливать большую энтальпию активации АЯ на этой стадии реакции. Ионы с противоположным знаком заряда, способные уменьшить электростатическое отталкивание между реагентами, могут служить активаторами всего процесса.

Какие одноименные заряды нужно поместить в двух остальных вершинах нижнего основания и в центре верхнего основания, чтобы силы, действующие на заряд, находящийся в центре, уравновешивались.

Некоторый четвертый одноименный заряд помещен на высоте пирамиды на расстоянии одной ее трети от основания. Какой пятый заряд нужно поместить в вершине пирамиды, чтобы четвертый заряд находился в равновесии.

Что одноименные заряды частиц делают коллоид устойчивым, подтверждается следующими фактами. Если смешать два коллоида, в одном из которых частицы дисперсной фазы заряжены отрицательно по отношению к данному растворителю, а в другом — положительно, то такая смесь коллоидов легко коагулирует и выпадает в виде осадка.

Некоторый четвертый одноименный заряд помещен на высоте пирамиды на расстоянии одной ее трети от основания. Какой пятый заряд нужно поместить в вершине пирамиды, чтобы четвертый заряд находился в равновесии.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

https://youtube.com/watch?v=MNIpF7BZEuI

https://youtube.com/watch?v=MkzSElu6fMI

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряжен­ных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

.

где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональнос­ти, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединя­ющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

k = 9 · 10 9 Н·м 2 /Кл 2 .

Часто его записывают в виде , где ɛ =8,85 · 10 — 12 Kл 2 H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:

.

Положительные и отрицательные заряды

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки — «кирпичики», образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Как распределяются заряды при соприкосновении

Возьмем два шара, имеющие одинаковые размеры. Один из шаров наэлектризуем, а второй оставим незаряженным. Если шары соприкоснутся, то заряд распределится поровну между двумя шарами (рис. 1).


Рис. 1. Если размеры совпадают, то при контакте тел между телами заряд распределяется на две равные части

Заменим теперь шар незаряженный шаром, имеющим большие размеры. При соприкосновении на большой шар перейдет большая часть заряда (рис. 2). То есть, заряд теперь распределяется не поровну.


Рис. 2. Когда размеры различаются, при контакте тел заряд между телами распределяется на неравные части

Это свойство используется при заземлении. Земной шар имеет значительно большие размеры, по сравнению с телами, которые на нем находятся.

Передавая заряд земле, тело становится электрически нейтральным, потому, что на землю стекает почти весь заряд тела (рис. 3).


Рис. 3. Заземляя тело, мы передаем весь его заряд на земной шар

В левой части рисунка 3 изображено тело до заземления. Оно имеет заряд «+q». А в правой — после заземления, тело заряда не имеет.

Примечание: Заземление – это передача избыточного заряда от тела к земле. Тела заземляют, соединяя с землей отрезком толстой проволоки, или кабеля. Заземление металлических корпусов электроприборов применяют для защиты людей от удара электрическим током.

Несколько случаев для контакта двух одинаковых тел удобно объяснить на примере решения задач.

Взаимодействие заряженных тел

Еще много веков назад заметили, что если потереть кусочек янтаря о шерсть, то он начнет притягивать различные мелкие предметы – ворсинки, кусочки бумаги, пушинки и т. д.

А позже выяснили, что такими же свойствами могут обладать и другие вещества – стекло, эбонит и т. п. Для того, чтобы тело приобрело возможность притягивать мелкие предметы, его нужно натереть, например, о сукно, шерсть, бумагу.

При этом, оба трущихся тела получат возможность притягивать другие предметы. На сайте есть отдельная статья о том, как соотносятся заряды трущихся тел.

Примечание: Янтарь (рис. 1) – застывшая смола хвойных деревьев, аморфное тело. Не проводит электроток — диэлектрик, но хорошо электризуется. Обладает малой плотностью, потому, может плавать в соленой воде, имеет поры, гигроскопичен (т. е. впитывает воду). В ультрафиолете может светиться – люминесцировать. В основном, состоит из углерода (примерно 70%), есть сера, азот. Растворяется в спирте, кислотах. В основном, это камень желтого цвета, однако, встречается красный, зеленый, голубой янтарь. Греческое название янтаря – электрон.

Рис. 1. Зеленый янтарь, янтарь бывает не только желтым

Крутильные весы Шарля Кулона

Это прибор, разработанный Кулоном в 1777 году, помог вывести зависимость силы, названной в последствии в его честь. С его помощью изучается взаимодействие точечных зарядов, а также магнитных полюсов.

Крутильные весы имеют небольшую шёлковую нить, расположенную в вертикальной плоскости, на которой висит уравновешенный рычаг. На концах рычага расположены точечные заряды.

Под действием внешних сил рычаг начинает совершать движения по горизонтали. Рычаг будет перемещаться в плоскости до тех пор, пока его не уравновесит сила упругости нити.

В процессе перемещений рычаг отклоняется от вертикальной оси на определённый угол. Его принимают за d и называют углом поворота. Зная величину данного параметра, можно найти крутящий момент возникающих сил.

Крутильные весы Шарля Кулона выглядят следующим образом:

Объяснение электризации

В § 8-а мы рассмотрели строение атома (положительно заряженное ядро и электронные оболочки) и строение металлов (положительно заряженные ионы и электронный газ). Это позволит нам объяснить явление электризации. Сделаем это.

При трении тел друг о друга «трутся» именно электронные оболочки атомов, из которых тела состоят. А так как электроны слабо связаны с ядрами атомов, то электроны могут отделяться от «своих» атомов и переходить на другое тело. В результате на нём возникает избыток электронов (отрицательный заряд), а на первом теле – недостаток электронов (положительный заряд).

Итак, электризация трением

объясняется переходом части электронов от одного тела к другому, в результате чего тела заряжаются разноимённо. Поэтому тела, наэлектризованные трением друг о друга, всегда притягиваются (см. § 8-б). Но, кроме электризации трением, существует электризация индукцией (лат. «индукцио» – наведение). Рассмотрим её на опыте:

В начале опыта имеются два металлических шара, которые касаются друг друга (а). К одному из них подносят, не касаясь его, заряженную стеклянную палочку (б), после чего второй шар отодвигают (в). Теперь палочку можно убрать, – шары будут разноимённо заряжены (г).

Объясним этот опыт с точки зрения электронно-ионной теории.

Сначала металлические шары не были заряжены. Это значит, что электронный газ присутствовал в шарах в равных количествах (а). Поскольку палочка стеклянная, мы считаем её заряд положительным (см. § 8-б). Она притягивает отрицательно заряженные частицы – электроны. В результате электронный газ «перетекает» в левую часть левого шара, и в этом месте образуется избыток отрицательного заряда (б).

Все положительные ионы металла прочно связаны друг с другом (они и есть металл), поэтому никуда не «перетекают». Значит, во всех остальных частях шаров возникает недостаток электронов, то есть положительный заряд. И если в этот момент, не убирая палочку, раздвинуть шары (в) и лишь затем убрать её, шары останутся разноимённо заряженными (г).

Итак, электризация индукцией

объясняется перераспределением электронного газа между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноимённо. Однако возникает вопрос: все ли тела поддаются электризации индукцией? Можно проделать опыты и убедиться, что пластмассовые, деревянные или резиновые шары можно легко наэлектризовать трением, но невозможно индукцией. Объясним это.

Электроны в резине, древесине и во всех пластмассах не являются свободными, то есть не образуют электронного газа, который может перетекать в другие тела. Поэтому для электризации тел из этих веществ необходимо прибегнуть к их трению, способствующему отделению электронов от «своих» атомов и переходу на другое тело.

Итак, по электрическим свойствам все вещества можно разделить на две группы. Диэлектрики

– вещества, не имеющие свободных заряженных частиц и потому не проводящие заряд от одного тела к другому. Проводники вещества со свободными заряженными частицами, которые могут перемещаться, перенося заряд в другие части тела или к другим телам. Это иллюстрирует рисунок с электроскопами, пластмассовой линейкой и металлической проволокой (см. выше).

Ну, вот, собственно, и все! Вся природа у нас в кармане! Теперь нами понят ее главный принцип.

Как собрать следующий, третий по счету химический элемент в таблице Менделеева? Очень просто. Берем три протона, три нейтрона и три электрона. Нуклоны скатываем, как снежок, в одно ядро, вокруг запускаем три штучки электрончиков – и получаем литий. Литий – это уже не газ. Это уже легкий металл. Самый легкий металл на свете.

Вы, надеюсь, уже нашли водород, гелий и литий в таблице Менделеева…

А теперь поступим так. Найдите-ка в таблице наше родное и всеми горячо любимое золото. Стойте!.. Лучше, чтобы вы не листали книгу туда-сюда, я просто сам перенесу из таблицы Менделеева клеточку с золотом сюда. И расположу ее чуть ниже золотых слитков.


Золото. Согласитесь, посмотреть приятно! Эти бы слитки да в хорошие руки! А вот клеточка из таблицы Менделеева, где томится золото.

Мы видим тут значок золота – Au (аурум) – и две цифры. Верхняя – это порядковый номер элемента в таблице Менделеева. У золота № 79. Почему такой?

Отчего золото оказалось в периодической таблице элементов под номером 79?

Не знаете? А могли бы и догадаться! Вспомните, как мы строили первые три простейшие вещества. У первого, водорода – один протон и один электрон. У второго, гелия – по два. У третьего, лития – по три. Уловили закономерность? Порядковый номер – это количество протонов в ядре атома и электронов на орбите, вот и все! Если элемент стоит в таблице Менделеева пятым, то это только потому, что у него пять протонов в ядре, а вокруг кружатся 5 электронов.

А вторая цифра, которая внизу, что значит? Выглядит она страшно, но пугаться не стоит. Это атомная масса. Только выражена она не в килограммах или граммах, а в атомных единицах, где гирькой служит нуклон. 1 нуклон – это одна единица массы. Два нуклона – две единицы атомной массы. Крайне просто.