Опыт кулона по определению силы электростатического взаимодействия точечных зарядов

Содержание

Закон сохранения зарядов

Закон сохранения зарядов

гласит, что заряды не появляются из неоткуда и не исчезают в никуда, а просто переходят от одного к другому или, выражаясь более научным языком – для замкнутой системы алгебраическая сумма зарядов всегда остается постоянной.

Скорее всего, Вам будет интересно:

  • Плотность тока проводимости, смещения, насыщения: определение и формулы
  • Уравнение состояния идеального газа Менделеева-Клапейрона с выводом
  • Основные положения молекулярно-кинетической теории (МКТ), формулы МКТ
  • Основное уравнение молекулярно-кинетической теории (МКТ) с выводом
  • Средняя линия трапеции: чему равна, свойства, доказательство теоремы
  • Свойства прямоугольной трапеции
  • Как найти область определения функции онлайн
  • Влияние человека на природу, воздействие общества на природу
  • Состав служебного программного обеспечения
  • Свойства вписанной в треугольник окружности

Коэффициент k

Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.

Коэффициент k в СИ выражается следующим образом: k = 1/4πε0, где ε0 – электрическая постоянная: ε0 = 8,85 ∙10-12 Кл2/Н∙м2. Выполнив несложные вычисления, мы находим: k = 9×109 H*м2 / Кл2. В метрической системе СГС k =1.

На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.

Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.

Об открытии закона Кулона

1785 г. стал годом, когда экспериментальным путём были доказаны действия, которые описываются в законе. Это открытие совершил Ш.О. Кулон при помощи специальных крутильных весов.

Но, уже в 1773 году с помощью конденсатора в форме сферы, Кавендиш доказал, что во внутренней части этой сферы не было электрического поля.

А это говорит об изменении электрических сил с учетом промежутка от одной частицы до другой. Или расстоянию в квадрате. Но эти научные данные никто не опубликовал.

Отсюда становится понятным, почему закон назван по имени ученого Ш. О. Кулона, а не в честь Кавендиша. Мера, с помощью которой проводят измерения разряда, получила аналогичное название.

ЕГЭ Закон Кулона. ЗАДАЧИ с решениями

Формулы, используемые на уроках «Задачи на взаимодействие зарядов и закон Кулона».

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
 Два шарика, расположенных на расстоянии г = 20 см друг от друга, имеют одинаковые по модулю заряды и взаимодействуют в воздухе с силой F = 0,3 мН. Найти число нескомпенсированных электронов N на каждом шарике.

Задача № 2.
 С какой силой взаимодействовали бы в воздухе две капли воды массами по m = 1 г, расположенные на расстоянии г = 50 см друг от друга, если бы одной из них передали 10% всех электронов, содержащихся в другой капле?

Задача № 3.
 Два одинаковых шарика зарядили так, что заряд одного из них оказался по модулю в п раз больше другого. Шарики привели в соприкосновение и развели на вдвое большее, чем прежде, расстояние. Во сколько раз изменилась сила их кулоновского взаимодействия, если их заряды до соприкосновения были разноименными?

Задача № 4.
 Два маленьких заряженных шарика взаимодействуют в вакууме с некоторой силой, находясь на расстоянии r1 друг от друга. На каком расстоянии r2 друг от друга они будут взаимодействовать в среде с диэлектрической проницаемостью ε2, если сила их взаимодействия останется прежней?

Задача № 5.
 Маленьким шариком с зарядом q коснулись внутренней поверхности очень большого незаряженного металлического шара, в результате чего на большом шаре поверхностная плотность зарядов стала равна σ. Найти объем V большого шара. Среда — воздух.

Задача № 6.
 Два металлических шарика имеют массу m = 10 г каждый. Какое число электронов N надо удалить с каждого шарика, чтобы сила их кулоновского отталкивания стала равна силе их гравитационного тяготения друг к другу?

Задача № 7.
 Между двумя одноименными точечными зарядами q1 = 1 • 10–8 Кл и q2 = 4 • 10–8 Кл, расстояние между которыми r = 9 см, помещают третий заряд q так, что все три заряда оказываются в равновесии. Чему равен этот третий заряд q и каков его знак? На каком расстоянии r1 от заряда q1 он располагается?

Задача № 8.
 Заряды q1 = 20 нКл и q2 = –30 нКл расположены на некотором расстоянии друг от друга (рис. 1-10). Заряд q помещают сначала в точку 1, расположенную слева от заряда q1 на расстоянии r/2 от него, а затем в точку 2, расположенную между зарядами q1 и q2. Найти отношение силы F1, с которой заряды q1 и q2 действуют на заряд q в точке 1, к силе F2, с которой они действуют на него в точке 2.

Задача № 9.
 В вершинах равностороннего треугольника находятся одинаковые заряды q = 2 нКл (рис. 1-11). Какой заряд q надо поместить в центр треугольника С, чтобы система всех этих зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 10.
 В вершинах квадрата расположены заряды q (рис. 1-12). Какой заряд q и где надо поместить, чтобы вся система зарядов оказалась в равновесии? Будет ли равновесие устойчивым? 

Задача № 11.
 В трех соседних вершинах правильного шестиугольника со стороной а расположены положительные заряды q, а в трех других — равные им по модулю, но отрицательные заряды. С какой силой F эти шесть зарядов будут действовать на заряд q, помещенный в центр шестиугольника (рис. 1-13)? 

Задача № 12.
 Два одинаковых маленьких шарика массами по m = 10 г каждый заряжены одинаково и подвешены на непроводящих и невесомых нитях так, как показано на рис. 1-14. Какой заряд q должен быть на каждом шарике, чтобы нити испытывали одинаковое натяжение? Среда — воздух, длина каждой нити l = 30 см. 

Задача № 13.
 На изолирующей нити подвешен маленький шарик массой m = 1 г, имеющий заряд q1 = 1 нКл. К нему снизу подносят на расстояние г = 2 см другой заряженный маленький шарик, и при этом сила натяжения нити уменьшается вдвое. Чему равен заряд q2 другого шарика? Среда — воздух.

Задача № 14.
 Два одинаковых маленьких шарика подвешены на невесомых нитях длиной I каждая в одной точке. Когда им сообщили одинаковые заряды q, шарики разошлись на угол а (рис 1-16). Найти силу натяжения Fн каждой нити. Среда — воздух. 

Задача № 15.
 Два одинаково заряженных шарика, подвешенных на нитях равной длины, разошлись на некоторый угол (рис. 1-17, а). Чему равна плотность материала шариков р, если после погружения их в керосин угол между нитями не изменился (рис. 1-17, б)? Относительная диэлектрическая проницаемость воздуха ε1 = 1, относительная диэлектрическая проницаемость керосина ε2 = 2. Плотность керосина р = 800 кг/м3. 

(с) В учебных целях использованы цитаты из учебного пособия «Новый репетитор по физике для подготовки к ЕГЭ : задачи и методы их решения / И.Л. Касаткина; под ред. Т.В. Шкиль. — Ростов н /Д : Феникс».

Это конспект по теме «ЕГЭ Закон Кулона. ЗАДАЧИ с решениями». Выберите дальнейшие действия:

  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Направление сил в законе Кулона

Тем самым, отличаясь от похожего правила гравитационного взаимодействия, при котором объекты только способны притягиваться.

Радиус-вектор – это сила, направленная вдоль прямой, которая проведена между двумя зарядами. Эта величина имеет следующее обозначение —  r12.

В том случае, когда два заряда имеют противоположные знаки, то тогда направление сил будет от центральной части одного заряда к противоположному заряду по всей проведенной прямой этими зарядами.

Однако, если они имеют одинаковые знаки, то направление будет в противоположную сторону.

Величина силы, приложенной кq1со стороны q2имеет обозначение следующего вида — F12. Чтобы определить силу, которая прикладывается на второй разряд применяют следующие символы -F21 и R21.

В случае, когда объект обладает сложной формой и большими размерами, что с заданным расстоянием оно не считается точечным, тогда объект разделяют на небольшие разделы и принимают каждый раздел за одиночный заряд.

Проведя все геометрические расчёты векторов выводят итоговое значение силы.

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).

Рис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10-9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1º. Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Основные формулы по физике: кинематика, динамика, статика

Внимание!

Если вам нужна помощь с академической работой, то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Расчет стоимости Гарантии Отзывы

Итак, как говорится, от элементарного к сложному. Начнём с кинетических формул:

Также давайте вспомним движение по кругу:

Медленно, но уверенно мы перешли более сложной теме – к динамике:

Уже после динамики можно перейти к статике, то есть к условиям равновесия тел относительно оси вращения:

После статики можно рассмотреть и гидростатику:

Куда же без темы “Работа, энергия и мощность”. Именно по ней даются много интересных, но сложных задач. Поэтому без формул здесь не обойтись:

Примечания

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 17. — 656 с. — ISBN 5-9221-0227-3.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 2 Теория поля. — 8-е изд., стереот. — М.: ФИЗМАТЛИТ, 2001. — 536 с. — ISBN 5-9221-0056-4 (Т. 2), Гл. 5 Постоянное электромагнитное поле, п. 38 Поле равномерно движущегося заряда, с 132
  3. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм. — М.: Наука, 1964. — Тираж 100 000 экз. — С. 33
  4. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 3. Квантовая механика (нерелятивистская теория). — 5-е изд., стереот. — М.: Физматлит, 2002. — 808 с. — ISBN 5-9221-0057-2 (Т. 3), гл. 3 Уравнение Шредингера, п. 17 Уравнение Шредингера, с. 74
  5. Бете Х. Квантовая механика. — пер. с англ., под ред. В. Л. Бонч-Бруевича, «Мир», М., 1965, Часть 1 Теория строения атома, Гл. 1 Уравнение Шредингера и приближённые методы его решения, с. 11
  6. Пайерлс Р. Е.  Законы природы. пер. с англ. под ред. проф. Халатникова И. М. , Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
  7. Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
  8. J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
  9. Уиттекер Э. История теории эфира и электричества. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 76. — 512 с. — ISBN 5-93972-070-6.
  10. Филонович С. Р. Кавендиш, Кулон и электростатика, М.: Знание. 1988, ББК 22.33 Ф53, гл. «Судьба закона», с. 48
  11. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
  12. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106—108;
  13. Калашников С. Г.,
    Электричество, М., ГИТТЛ, 1956, гл. III «Разность потенциалов», п. 34 «Точная проверка закона Кулона», с. 68—69; «Добавления», 1. «Теория опытов Кавендиша и Максвелла», с. 642—645;
  14. E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721—724 (1971);
  15. W. E. Lamb, R. C. Retherford. Fine Structure of the Hydrogen Atom by a Microwave Method (англ.) // Physical Review. — Т. 72, № 3. — С. 241-243.
  16. ↑ Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
  17. Берестецкий, В. Б., Лифшиц, Е. М., Питаевский, Л. П. Квантовая электродинамика. — Издание 3-е, исправленное. — М.: Наука, 1989. — С. 565-567. — 720 с. — («Теоретическая физика», том IV). — ISBN 5-02-014422-3.
  18. Окунь Л. Б. Физика элементарных частиц. Изд. 3-е, М.: «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
  19. «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
  20. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
  21. Uehling E. A ., Phys. Rev., 48, 55, (1935)
  22. Швебер С., Бете Г., Гофман Ф. Мезоны и поля. Том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
  23. Мигдал А. Б. Поляризация вакуума в сильных полях и пионная конденсация// Успехи физических наук Т. 123— в. 3.— 1977 г., ноябрь.— с. 369—403;
  24. Спиридонов О. П. Универсальные физические постоянные.— М.: Просвещение.— 1984.— с. 52-53;

Определение электрического поля (Е)

Электрическое поле (напряженность поля) E в данной точке определяется как значение, равное отношению силы F, действующей на положительный испытательный заряд q, к значению нагрузки:

Движение заряженных частиц в поле происходит под действием силы F = Q*E.

Аддитивность полей

Поле E является аддитивным вектором, что означает, что результирующее электрическое поле представляет собой векторную сумму полей E 1 , E 2 , E 3 …, полученных из отдельных зарядов:

Линии напряженности электрических полей

Концепция силовых линий поля была также введена Майклом Фарадеем (1791-1867). Линии напряженности поля представляют собой воображаемые кривые в пространстве, находящиеся в каждой точке, касающейся вектора E в этой точке. Это также означает, что в каждой точке линии поля имеется касательный вектор силы, действующий в этом поле для испытательной нагрузки (небольшой положительный заряд). Как показано на рисунке ниже, силовая линия — это траектория положительного испытательного заряда (маленький красный шарик), движущегося в поле E , причем сила F является результирующей (векторной суммой) двух сил: силы, отталкивающей испытательный заряд от положительного заряда F Q, и силы притяжения испытательная нагрузка на отрицательный заряд F q. Такая картина силовых линий верна только тогда, когда пренебрегают силами инерции (центробежными), возникающими из-за ненулевой массы груза. Линии напряженности поля никогда не пересекаются друг с другом. Представляя силовые линии, принимается соглашение о вытягивании, согласно которому плотность силовых линий пропорциональна напряженности поля в этом месте. Силовые линии в окрестности системы двух точечных нагрузок, положительной и отрицательной, одинакового абсолютного значения показаны на рисунке:

Один заряд, помещенный в вакуум, окружен радиальной системой силовых линий.

Задача 2

Два одинаковых заряженных шарика подвешены в среде с диэлектрической проницаемостью  на нитях одинаковой длины , закрепленных в одной точке. Определите модуль заряда шариков, если нити находятся под прямым углом друг к другу (см. рис. 15). Размеры шариков пренебрежимо малы по сравнению с расстоянием между ними. Массы шариков равны .

Рис. 15. Рисунок к условию задачи 2

Порассуждаем: на каждый из шариков будут действовать три силы – сила тяжести ; сила электростатического взаимодействия  и сила натяжения нити  (см. рис. 16).

Рис. 16. Силы, действующие на шарики

По условию шарики одинаковые, то есть их заряды равны как по модулю, так и по знаку, а значит, сила электростатического взаимодействия в данном случае будет силой отталкивания (на рис. 16 силы электростатического взаимодействия направлены в разные стороны). Так как система находится в равновесии, будем использовать первый закон Ньютона:

Так как в условии сказано, что шарики подвешены в среде с диэлектрической проницаемостью , а размеры шариков пренебрежимо малы по сравнению с расстоянием между ними, то в соответствии с законом Кулона сила, с которой будут отталкиваться шарики, будет равна:

Решение

Распишем первый закон Ньютона в проекциях на оси координат. Ось  направим горизонтально, а ось  вертикально (см. рис. 17).

Рис. 17. Выбор направления осей координат

Рис. 18. Силы в проекциях на оси координат

Так как на шарики действуют одинаковые силы тяжести и силы электростатического взаимодействия, нити тоже одинаковые – они отклонятся на одинаковые углы  (см. рис. 19).

Рис. 19. Углы, на которые отклоняются шарики, одинаковые

В сумме эти углы дают нам , это означает, что:

Тогда из прямоугольного треугольника можно найти углом :

Добавим к двум уравнениям, которые мы записали, выражение для модуля силы электростатического взаимодействия:

Расстояние  найдем геометрически – найдем прилежащий к углу  катет и умножим его на 2:

Мы получили систему из 4-х уравнений:

Математическое решение можно пронаблюдать в свертке.

Ответ:

Решение системы уравнений

Выразим из второго уравнения силу натяжения нити  и подставим в первое:

Отсюда выразим силу электростатического взаимодействия:

Приравняем выражение для силы электростатического взаимодействия, которое мы сейчас выразили с третьим уравнением:

Подставим сюда выражение для

Выразим искомый заряд

Так как угол , то , тогда: 

На этом наш урок закончен

Спасибо за внимание

Список литературы

1. Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

2. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учеб. для общеобразоват. учреждений. Базовый и профильный уровни. 19-е издание – М.: Просвещение, 2010. 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

2. Интернет-сайт «ная физика» (Источник)

Домашнее задание

1. Запишите формулу закона Кулона.

2. Как взаимодействуют разноименно заряженные тела?

3. Решите задачу: два заряда, 10 нКл и -2 нКл, закреплены на расстоянии 10 см друг от друга. Определите силу, с которой они взаимодействуют.

Закон Кулона. Точечный заряд.

Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке.

Точечный заряд – это электрический заряд, когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона. Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Эта сила взаимодействия называется кулоновская сила, и формула закона Кулона будет следующая:

F = k · (|q1| · |q2|) / r2

где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

k = 1 / (4πε0ε)

где ε0 = 8,85 * 10-12 Кл/Н*м2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 109 Н*м/Кл2.

Сила взаимодействия неподвижных точечных зарядов в вакууме:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2]

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2] = k · (1 /π) · [(|q1| · |q2|) / r2]

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

F1,2 = -F2,1

Кулоновская сила является центральной силой. Как показывает опыт, одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F2,1, действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с

, на одном конце которой закреплён металлический шарика , а на другом противовесd . Верхний конец нити закреплён на вращающейся головке приборае , угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарикb , неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шарикамиa иb при различных их положениях.

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряжен­ных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов. Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

.

где |q1| и |q2| — модули зарядов; r — расстояние между ними; k — коэффициент пропорциональнос­ти, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединя­ющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в 1 А — вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент k в законе Кулона при его записи в СИ выражается в Н · м 2 /Кл 2 . Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

k = 9 · 10 9 Н·м 2 /Кл 2 .

Часто его записывают в виде , где ɛ =8,85 · 10 — 12 Kл 2 H·м 2 — электрическая постоянная. В среде с диэлектрической проницаемостью ɛ закон Кулона имеет вид:

.

Принцип суперпозиции закон Кулона

Вне зависимости от того, сколько зарядов в системе, можно использовать закон Кулона, чтобы высчитать силу взаимодействия между каждой парой. Отсюда следует принцип суперпозиции, который формулируется примерно так:

На заряд, который расположен в любой точке системы зарядов, действует сила. При этом заряды в системе объединены. Данная сила представляет собой векторную сумму сил, создающихся каждым зарядом системы по отдельности и действующих на заряд в данной точке. К слову, принцип суперпозиции распространяется на любые заряженные тела, не обязательно только на точечные заряды.

Принцип суперпозиции

Рисунок: F=F21+F31; F2=F12+F32; F3=F13+F23;

Пример: Есть две заряженные точки, которые действуют на третью точку силами: F1 и F2. Тогда система, состоящая из первой и второй точек, действует на третью точку с силой F = F1 + F2.

Также отсюда следует, что напряженность электрического поля, то есть силовая характеристика поля, складывается из суммы напряженностей, которые создаются обособленным зарядом поля.

Напряженность электрического поля

1) Напряженность равна результату деления кулоновской силы, действующей на заряд, на величину этого заряда.

= Н/Кл = В/м

2) Величина пробного заряда не влияет на напряжённость.

3) Сила, которая действует на заряд от электрического поля, равняется произведению заряда на вектор напряженности в этой точке.

Напряженность электрического поля точечного заряда Q

Если рассмотреть с физической точки зрения, данное правило исходит из того, что покоящиеся заряды создают электростатическое поле. Иначе говоря, поля разных зарядов не влияют друг на друга, то есть суммарное поле системы зарядов складывается из векторной суммы электростатических полей, созданных каждым зарядом.

Важно! Следует учесть, что принцип суперпозиции не действует на очень малых или слишком больших расстояниях. Принцип суперпозиции подразумевает тот факт, что на силы между двумя предметами (подразумеваются силы взаимодействия) не влияет присутствие других тел, обладающих каким-то количеством заряда. Но при этом должно быть задано распределение зарядов

Но при этом должно быть задано распределение зарядов

Принцип суперпозиции подразумевает тот факт, что на силы между двумя предметами (подразумеваются силы взаимодействия) не влияет присутствие других тел, обладающих каким-то количеством заряда. Но при этом должно быть задано распределение зарядов.