Твердотельное реле

Содержание

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам

Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

https://youtube.com/watch?v=nF3b9V5MnEo

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Это интересно: Перегорают галогеновые лампочки в люстре: в чем причина?

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Watch this video on YouTube

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Назначение и виды

Реле контроля тока – это устройство, которое реагирует на резкие перепады величины поступающего электрического тока и при необходимости отключает питание определенного потребителя или всей системы электрообеспечения. Его принцип действия основан на сравнивании внешних электрических сигналов и мгновенном реагировании при их несовпадении с параметрами работы прибора. Используется для работы генератора, насоса, двигателя автомобиля, станочного оборудования, бытовых приборов и прочего.

Существуют такие виды приборов постоянного и переменного тока:

  1. Промежуточные;
  2. Защитные;
  3. Измерительные;
  4. Давления;
  5. Времени.

Промежуточное устройство или реле максимального тока (РТМ, РСТ 11М, РС-80М, РЭО-401) применяется для размыкания или замыкания цепей определенной электрической сети при достижении определенного значения тока. Чаще всего используется в квартирах или домах с целью повышения защиты бытового оборудования от скачков напряжения и силы тока.

Принцип действия теплового или защитного прибора основан на контроле температуры контактов определенного прибора. Оно используется для защиты приборов от перенагревания. К примеру, если утюг перегреется, то такой датчик автоматически отключит питание и включит его после остывания прибора.

Статическое или измерительное реле (РЭВ) помогает замыкать контакты цепи при появлении определенного значения электрического тока. Его главное назначение – это сравнение имеющихся параметров сети и необходимых, а также быстрое реагирование на их изменение.

Реле давления (РПИ-15, 20, РПЖ-1М, FQS-U, FLU и прочие) необходимо для контроля жидкости (воды, масла, нефти), воздуха и т. д. Используется для отключения насоса или прочего оборудования при достижении установленных показателей давления. Часто используются в водопроводных системах и на станциях техобслуживания авто.

Реле выдержки времени (производитель EPL, Danfoss, а также модели РТВ) необходимы для управления и замедления реагирования определенных приборов при обнаружении утечки тока или других неполадках в сети. Такие приборы релейной защиты применяются как в быту, так и в промышленности. Они препятствуют преждевременному включению аварийного режима, срабатыванию УЗО (оно же дифференциальное реле) и автоматических выключателей. Схема их установки часто сочетается с принципом включения в сеть защитного оборудования и дифов.

Помимо этого также бывают электромагнитные реле напряжения и тока, механические, твердотельные и т. д.

Твердотельное реле – это однофазное устройство для коммутации больших токов (от 250 А), обеспечивающее гальваническую защиту и изоляцию электрических цепей. Это, в большинстве случаев, электронное оборудование, предназначенное для быстрого и точного реагирования на возникновение проблем в сети. Еще одним преимуществом является то, что такое токовое реле можно сделать своими руками.

По конструкции реле классифицируются на механические и электромагнитные, а сейчас уже, как сказано выше, на электронные. Механическое может использоваться в различных условиях работы, для его подключения не требуется сложная схема, оно долговечное и надежное. Но вместе с этим, недостаточно точное. Поэтому сейчас в основном используются его более современные электронные аналоги.

Практическое применение устройств

Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.


Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования

Основными же сферами применения ТТР являются:

  • система терморегуляции с применением ТЭНов;
  • поддержание стабильной температуры в технологических процессах;
  • контроль работы трансформаторов;
  • регулировка освещения;
  • схемы датчиков движения, освещения, фотодатчиков для уличного освещения и т.п.;
  • управление электродвигателями;
  • источники бесперебойного питания.

С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.

При желании, собрать твердотельное реле можно собственноручно. Подробная инструкция представлена в этой статье.

Как выбрать полупроводниковое устройство?

Покупая твердотельное реле нужно обратить внимание на его основные характеристики:

  • Вид SSR.
  • Материал корпуса.
  • Тип включения – быстрый или постепенный.
  • Производитель.
  • Наличие крепежей.
  • Уровень потребления электроэнергии.
  • Размер ТТР.
  • Необходимо учесть коммутируемый регулятор напряжение.

Важно! Реле должно иметь большой запас мощности напряжения для его надежного и продолжительного использования. Иначе при скачке напряжения произойдёт поломка

Выполняя работы по проведению электрической системы помещения и устанавливая оборудование, вне зависимости от его масштабов, важно чтобы всё работало надежно и исправно. Осуществлению этого способствует полупроводниковое устройство

При верном подборе типа SSR и правильной установке, оно будет долговечно.

Особенности защитной цепи

Как видите, трудностей при изготовлении нет никаких. Если сомневаетесь в своих силах, то лучше, конечно, приобрести промышленный образец устройства. Можно выделить ключевые особенности самодельных реле:

  1. Управляющее напряжение – 3..30 В, ток постоянный.
  2. К выходу допускается подключать источники напряжением 115..280 В.
  3. Выходная мощность порядка 400 Вт.
  4. Минимальный ток, при котором работает устройство, составляет около 50 мА.

Если устройство используется для коммутации низких токов (до 2 А), то нет необходимости устанавливать радиатор. Но если токи высокие, будет происходить сильный нагрев элементов. Поэтому об охлаждении нужно позаботиться – установите дополнительный радиатор и кулер (если имеется возможность организовать питание для него).

Обратите внимание на то, что при управлении асинхронными моторами нужно увеличивать примерно в 10 раз запас по току. При запуске двигатель «тянет» из сети ток, который в несколько раз превышает рабочее значение

Именно по этой причине нужно использовать силовые элементы со значительным запасом по току.

Подключение твердотельного реле

Принцип подключения прост. В приборе предусмотрены управляющие входы (на них подается напряжение с четким соблюдением полярности) и выход для подключения нагрузки. Важный момент — качество соединения. Здесь применяется винтовой способ (пайка исключена).

Чтобы избежать повреждения ТТР, важно исключить попадание на контакты пыли, а также посторонних механических элементов. Стоит предусмотреть меры, препятствующие негативному воздействию на кожух прибора (во включенном или отключенном состоянии). После включения запрещено прикасаться к корпусу, который может быть горячим

После включения запрещено прикасаться к корпусу, который может быть горячим

Обратите внимание, чтобы ТТР не располагалось вблизи легковозгораемых материалов. Кроме того, в процессе подключения убедитесь, что коммутация выполнена без ошибок. Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше)

Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше).

Если ничего не предпринять, при достижении 80 градусов Цельсия прибор перестанет работать. Управление осуществляется при помощи цепочки с различными вариантами исполнения.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.