Как греется модуль
В процессе зарядки, когда ток составляет 1 ампер, модуль прилично греется. Стоит учитывать этот факт при использовании модуля в закрытом устройстве. Так, на открытом воздухе температура модуля достигала значений более 70 градусов (по термопаре).
В случае установки модуля в закрытый корпус желательно снизить максимальный ток заряда до 500-700 мА. Но на терма-клей все же не стоит крепить.
У самого же модуля предусмотрена защита от перегрева. Так при перегреве модуль начинает ограничивать выходной ток. Так что от перегрева он скорее всего не сдохнет. Но не стоит полностью полагаться на защиту))
Как заряжать литиевые аккумуляторы
Вся фишка зарядки литиевых аккумуляторов кроется в том, что ни ток заряда ни напряжение не должен быть постоянными. Процесс заряда должен проходить по определенным фазам:
- При полной разрядке аккумулятора ( < 3 вольт) ток заряда должен быть максимальным. Обычно он не должен превышать значения емкости аккумулятора (С).
- По мере накопления заряда, т.е. повышении напряжения аккумулятора, ток заряда должен уменьшаться.
- При достижении 90% от полного заряда, ток заряда должен снизиться до уровня порядка 0,1С. Как только напряжение на аккумуляторе достигнет 4.1-4.15 В, процесс заряда должен прекратиться.
Измерения заряда аккумулятора
Для изучения процесса заряда аккумулятора была реализована следующая измерительная схема:
Полученный с ее помощью график, представлен на следующей картинке. Для удобства синим обозначена зависимость тока, а красным — зависимость напряжения от времени. При этом время указанно в секундах.
6000 секунд соответствуют 100 минутам или же в более привычном виде это 1 час 40 минут. Соответственно полная зарядка аккумулятора заняла около 6 часов. При емкости аккумулятора в 3000 мАч, средний ток заряда можно считать равным 500мА.
На графике отлично видны все три описанные выше фазы зарядки. Схемка отрабатывает все как и положено. Между разными экземплярами модулей присутствует небольшой разброс конечного напряжения, но он не критичен.
Стоит отметить, что любое измерение физической величины это лишь попытка приближения к истинному значению
Не стоит обращать внимание на мелкие зубчики, их природа может быть вызвана как неравномерностью АЦП так и нелинейностью модуля. Что совсем не критично
Описание некоторых элементов.
R5 C2 — фильтр цепи питания DW01A. Через него также осуществляется контроль напряжения на аккумуляторе.
R6 — нужен для защиты от переполюсовки зарядки. Через него также измеряется падение напряжения на ключах для нормальной работы защиты.
Красный светодиод — индикация процесса заряда аккумулятора
Синий светодиод — индикация окончания заряда аккумулятора
Переполюсовку аккумулятора плата выдерживает лишь кратковременно — быстро перегревается ключ FS8205A. Сами по себе FS8205A и DW01A переполюсовки аккумулятора не боятся из-за наличия токоограничивающих резисторов, но из-за подключения TP4056 ток переполюсовки начинает течь через него.
При напряжении аккумулятора 4,0V, измеренное полное сопротивление ключа 0,052 Ом
При напряжении аккумулятора 3,0V, измеренное полное сопротивление ключа 0,055 Ом
Защита от токовой перегрузки — двухступенчатая и срабатывает, если:
— ток нагрузки превышает 27А в течение 3мкс
— ток нагрузки превышает 3А в течение 10мс
Информация рассчитана по формулам из спецификации, реально это не проверить.
Длительный максимальный ток отдачи получился около 2,5А, при этом ключ заметно нагревается, т.к. на нём теряется 0,32Вт.
Защита от переразряда аккумулятора срабатывает при напряжении 2,39В — маловато будет, не всякий аккумулятор можно безопасно разряжать до такого низкого напряжения.
Купить Контроллер заряда на TP4056 . за $0.3
Где купить модуль заряда Li акумулятора?
Я не могу ручаться за все подобные модул. Их производством не брезгует каждый уважающий себя житель поднебесной. Показанные модули заказывались уже не первый раз у конкретного продавца. Которого советую и вам.
Покупать такие модули поштучно не выгодно — продавцы начинают накручивать цену и за модуль и за доставку. Удобнее и дешевле закупать сразу по 5 или 10 штук даже если требуется 1-2. Очень удобно, когда где-то в шкафу лежит кучка таких модулей и при необходимости можно быстро сообразить из них зарядку. Вот ссылки на разные лоты проверенного магазина:
- 5 шт. micro-USB – 1.57$
- 5 шт. mini-USB – 1.57$
- 10 шт. micro-USB – 2.61$
- 10 шт. mini-USB – 2.61$
1.57$ за 5 штук, и тем более 2.61$ за 10 штук — это копейки. Во многих магазинах радиодеталей с вас попросят аналогичную сумму за каждый такой модуль.
цены от 16 сентября 2020
Контроллер заряда литиевых аккумуляторов без защиты с разъемом Mini USB
Имеющийся в наличии аккумулятор BL-4C от телефона Nokia давно не давал покоя своей неприспособленностью, а частая замена Крон в тестере натолкнула на мысль о его переводе на питание от литиевого аккумулятора. Для этого нужны аккумулятор, повышающий преобразователь и контроллер заряда аккумулятора. Среди большого разнообразия схем и решений в виде готовых модулей заряда литиевых аккумуляторов приглянулся модуль на широко известном чипе TP4056. На основе данного чипа китайская промышленность выпускает целый спектр плат контроллеров заряда Li-on аккумуляторов – без защиты от короткого замыкания и переполюсовки, с защитой, с возможностью подключения термодатчика и т.д. Ввиду того что внутренний мир BL-4C уже содержит плату защиты от короткого замыкания, переполюсовки и т.д., для реализации задуманного был выбран самый простой модуль, содержащий лишь контроллер уровня заряда. Данный модуль имеет следующие характеристики: Входное напряжение: 4,5-5,5 Вольт. (Согласно даташита на чип TP4056 можно подавать до 8 вольт, но в данном случае зарядный ток будет уменьшен контроллером); Зарядный ток: 1000 мА (регулируется подбором резистора Rprog); Напряжение полного заряда: 4.2В; Входной разъем: mini USB (+ места для подпайки проводов); Габариты: 25*19*4 мм
Схема модуля имеет следующий вид:
Как работает модуль? При подключенном аккумуляторе и подаче питания загорается красный светодиод, сигнализирующий о подаче входного напряжения. После этого начинается процесс заряда. Этим процессом управляет сам чип. Зарядка производится номинальным током (в базовом варианте 1000 мА). По мере заряда банки контроллер снижает зарядный ток. В тот момент, когда аккумулятор зарядился до 4,2В, контроллер снижает зарядный ток до 50 мА и загорается синий светодиод. В таком состоянии аккумулятор может находиться бесконечно долго без всякого вреда.
Что необходимо помнить? Данный модуль не имеет защиты от переполюсовки и короткого замыкания на выходе. Если это случится, чип выйдет из строя и при монтаже следует быть внимательным. В базовом варианте (1000 мА) чип может существенно нагреваться. Согласно даташита предельная температура нагрева 145 градусов. Производитель чипа рекомендует заряжать аккумуляторы током 0,37С, т.е. в моем случае 860 мА*0,37 = 318 мА. Таблица зависимости зарядного тока от номинала сопротивления Rprog
В наличии нашлись резисторы по 3,6 кОм. Ориентировочно ток заряда составит нужную величину.
Перепаиваю, соединяю с АКБ и пока заряжаю понижающим преобразователем. Повышающий пока в пути из Китая.
В результате: контроллер чуть теплый, АКБ заряжена, время зарядки 2 часа.
Рекомендации по использованию
Чтобы продлить срок службы Li-ion батарей, нужно:
- Следовать рекомендациям производителя по их эксплуатации.
- Не превышать рекомендованный зарядный ток. Оптимальным током заряда считается значение, равное 50% номинальной емкости батареи. Так, для АКБ емкостью 10 Ач оптимальный зарядный ток составляет 5 А. Исключение – современные литий-титанатные модели. Они допускают токовые нагрузки до 10С.
- Избегать перезаряда, глубокого разряда батарей, их длительного хранения в разряженном состоянии, механических повреждений, перегрева и переохлаждения.
Используйте литиевые АКБ правильно, и они долго будут радовать вас отличными рабочими характеристиками.
Предлагаем для ознакомления обзор электрических фэтбайков – электровелосипедов с толстыми колесами.
Зарядка литий-ионной батареи 18650 с помощью TP4056
Батареи 18650 – это очень распространенные литий-ионные аккумуляторы. Они используются в ноутбуках, батареях питания и т. д.
Если у вас есть 18650, подключите одну батарею, как показано на следующей схеме подключения. Вы можете заряжать только одну батарею за раз. Чтобы зарядить батарею, вы можете использовать разъемы IN+ и IN- и подавать напряжение 5 В, или же вы можете использовать кабель USB для прямой зарядки от источника USB.
Таким образом, использовать TP4056 для зарядки литий-ионных аккумуляторов очень просто. Главное -правильно соблюдать полярность подключения.
digitrode.ru
Алгоритм процесса заряда аккумулятора
Для того чтобы понять, как происходит заряд батареи, рассмотрим схему, в состав которой входят только резистор и сам аккумулятор.
Как проконтролировать заряд АКБ с помощью резистора
В нашем случае используется аккумулятор 18650, емкость которого составляет 2400 мА/ч, с пороговыми значениями напряжения 2,8-4,3 В, и блок питания на 5 вольт и максимальный ток в 1 А. Рассчитаем параметры необходимого резистора. При этом будем считать, что аккумулятор находится в нормальном состоянии, а не полностью разряжен. Проведем зарядку батареи. Сначала, когда напряжение на АКБ минимально, ток будет максимален, а Ur – падение напряжение на резисторе, должно составить 2,2 Вольта (это разница между Uип – напряжением блока питания 5 В и начальными показателями батареи).
Исходя из этих данных, рассчитываем R — начальное сопротивление на резисторе и Pr — мощность рассеивания:
R= Ur/I = 2.2/1 = 2.2 Ом, где I – это максимальный ток блока питания.
Pr=I2R =1х1х2.2 = 2.2 Вт.
Когда напряжение в аккумуляторе дойдет до 4,2 В, Iзар – ток заряда, составит:
Iзар=(Uи -4.2)/R=(5-4.2)/2.2 = 0.3 А.
Получается, что для зарядки нам понадобится резистор, который работает при данных показателях. Но в этой схеме все время придется проверять напряжение на аккумуляторе, чтобы не пропустить момент, когда оно достигнет максимального значения в 4,2 В.
Важно! Теоретически зарядить аккумулятор без отдельной схемы защиты возможно, но проследить при этом за напряжением и зарядным током не получится. Да, 1-2 раза такой вариант может быть использован, но гарантировать, что батарея при этом не выйдет из строя, нельзя
Литиевый аккумулятор – устройство и принцип работы
В структуре Li-ion аккумулятора есть катод из производных лития на алюминиевой фольге и графитовый анод на фольге из меди. В качестве производных лития используются различные соединения: LiCoO2, LiMn2O4, LiFePO4, LiNiO2, LiMnRON, LiC6, LiMnO2, Li4Ti5O12 и др. Между катодом и анодом находится пористый сепаратор, пропитанный электролитом с функциями проводника. Заряд переносят ионы лития, легко встраиваемые в кристаллическую решетку пористого углерода и вызывающие соответствующую химическую реакцию.
Конструкция из электродов и находящегося между ними сепаратора сворачивается в виде рулона и помещается в герметичную оболочку из стали, алюминия или полимерного материала. При этом электроды подсоединяются к токосъемникам. В итоге получаются Li-ion элементы цилиндрической или призматической формы – в зависимости от принципа сворачивания фольги. Самый распространенный типоразмер Li-ion аккумуляторов в форме цилиндра – 18650.
https://youtube.com/watch?v=hZWDg9e05qs
Самодельные приборы для заряда
Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.
В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.
Схема на двух транзисторах
Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.
Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.
Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.
Использование специализированной микросхемы
Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:
Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.
HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:
- Uвх – наибольшее напряжение на входе;
- Uбат – напряжение на аккумулятор;
- Iзар – зарядный ток.
Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.
https://youtube.com/watch?v=XUZh5O4COVM
Первый минус
В платах защиты применяют микросхемы разных типов (подробнее об этом читайте в этой статье), наиболее распространенные из них представлены в таблице:
Микросхема | DW01-P | 628-8241ABPM-G, 628-8242BACT, 628-8254AAJ-G | 628-8244AAA-G | AAT8660A, AAT8660F | FS326E |
Порог срабатывания защиты от перезаряда, В | 4.250±0.05 | 4.350 | 4.45 | 4.325±0.050 | 4.30±0.04 |
Микросхема | AAT8660B, AAT8660G, SA57608Y, SA57608D | AAT8660C, AAT8660H, AAT8660I | AAT8660D, AAT8660E, AAT8660J | FS326A, FS326C | FS326B, R5421N112C, R5421N152F |
Порог срабатывания защиты от перезаряда, В | 4.350±0.050 | 4.300±0.050 | 4.280±0.050 | 4.325±0.025 | 4.350±0.025 |
Микросхема | FS326D | LV51140T, R5421N111C, R5421N151F | SA57608B, SA57608G | SA57608C | SA57608E |
Порог срабатывания защиты от перезаряда, В | 4.300±0.025 | 4.250±0.025 | 4.280±0.025 | 4.295±0.025 | 4.275±0.025 |
Нормальным значением, до которого заряжают литий-ионный аккумулятор является 4.2 Вольта. Однако, как можно видеть из таблицы, большинство микросхем заточены под несколько… эээ… завышенное напряжение.
Это объясняется тем, что платы защиты рассчитаны на срабатывание при возникновении аварийной ситуации для предотвращения закритических режимов работы аккумулятора. Таких ситуаций при нормальной эксплуатации батарей вообще быть не должно.
Редкие перезаряды литиевого аккумулятора до напряжения, например, 4.35В (микросхема SA57608D), наверное, не приведут к каким-либо фатальным последствиям, но это не означает, что так будет всегда. Кто знает, в какой момент это приведет к выделению металлического лития из гелевого электролита, ведущего к неизбежному замыканию электродов и выходу аккумулятора из строя?
Уже одного этого обстоятельства достаточно чтобы отказаться от использования плат защиты в качестве контроллера зарядного устройства. Но если вам этого мало, читайте дальше.
Микросхема TP4056
TP4056 – это недорогая микросхема контроллера литий-ионных аккумуляторов. Она поддерживает механизм зарядки постоянным током и постоянным напряжением для одноэлементной литий-ионной батареи.
Она доступна в 8-выводном корпусе SOP и требует минимального количества внешних компонентов для построения схемы зарядки литий-ионных аккумуляторов.
На следующем рисунке показана схема контактов (распиновка) микросхемы литий-ионного зарядного устройства TP4056. Это 8-выводная микросхема с контактами TEMP, PROG, GND, VCC, BAT и CE.
TEMP – это входной контакт для измерения температуры. Он подключен к выходу термистора NTC в батарейном блоке. Основываясь на напряжении на этом выводе, вы можете определить температуру батареи. Температура батареи слишком низкая, если напряжение составляет менее 45% от напряжения постоянного тока в течение более 0,15 с, или слишком высокое, если напряжение превышает 80% от напряжения постоянного тока в течение той же продолжительности,
PROG – настройка постоянного тока зарядки. Ток заряда аккумулятора устанавливается путем подключения резистора RPROG между этим контактом и заземлением. В зависимости от значения резистора ток зарядки может составлять от 130 мА до 1000 А.
GND – земля.
VCC – напряжение питания. TP4056 может поддерживать максимум 8 В на VCC, но обычно используется 5 В.
BAT – это контакт подключения аккумулятора, подсоединяемый к положительному контакту аккумулятора. Напряжение на этом выводе составляет 4,2 В.
STDBY – контакт режима ожидания. Когда батарея полностью заряжена, этот вывод переходит в низкий логический уровень. К нему подключают светодиод для индикации режима ожидания.
CHRG – контакт зарядки. Когда аккумулятор заряжается, этот вывод переходит в низкий логический уровень. К этому контакту подключают светодиод для индикации зарядки аккумулятора.
CE – контакт активации микросхемы. Это входной контакт для включения или отключения микросхемы. Когда на входе высокий логический уровень, TP4056 находится в рабочем режиме.
Как упоминалось ранее, PROG (контакт 2) используется для управления током зарядки аккумулятора. Он управляется с помощью резистора Rprog. В следующей таблице приведен список значений зарядного тока для соответствующих значений RPROG.
Это рассчитывается по формуле Ibat = (Vprog / Rprog) * 1200 и Vprog = 1 В.
Контроллеры заряда и схемы защиты — в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой
Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Режимы работы литиевых АКБ
Есть 2 основных режима использования литиевых АКБ:
- Буферный – например, в современных источниках бесперебойного питания. Батарея в таком случае постоянно подпитывается от электросети, а при перебоях в электроснабжении – отдает накопленный заряд подключенному к ней оборудованию. Когда электроснабжение от сети восстанавливается, АКБ снова подзаряжается и находится в режиме постоянной готовности к дальнейшему использованию.
- Циклический – подразумевает чередование фаз заряд-разряд, когда после пассивной фазы восстановления заряда следует продолжительная фаза активной работы. В таком режиме работают аккумуляторные батареи электровелосипедов и других видов персонального электротранспорта, погрузчиков, поломоечных машин, электромобилей, мотолодок, мобильных кофемашин и другой техники. Срок службы таких АКБ измеряется не годами, а количеством циклов глубокого разряда (до 80%) и последующего заряда.
Литий-ионные батареи успешно используются и в буферном, и в циклическом режиме. Если эксплуатация АКБ подразумевает жесткие условия и частые глубокие разряды, лучше всего с такими задачами справляются литий-железо-фосфатные батареи (LiFePO4). В частности, они используются для питания лодочных электромоторов, складской и клининговой техники, е-байков и других видов электротранспорта.
Старение и деградация литиевых АКБ
В результате циклического заряда-разряда литиевые аккумуляторы постепенно «стареют» – ионы лития не всегда возвращаются в свое исходное положение, состояние катода меняется, в системе накапливаются продукты окисления. В итоге аккумуляторная батарея медленно и безвозвратно утрачивает часть своей емкости.
Считается, что при потере 30% исходной емкости жизненный цикл батареи завершается. При потере емкости на 50% батарея подлежит утилизации. Рабочий ресурс батареи определяется как количество полных циклов заряда-разряда до тех пор, когда емкость АКБ снизится на 20%. В среднем ресурс Li-ion аккумуляторов составляет 1000 циклов, у моделей вида LiFePO4 – более 2000, а у литий-титанатных – более 20 000.
Задачи и функции BMS платы
Слабым местом Li-ion аккумуляторов считается их чувствительность к перезарядам и глубоким разрядам. Чтобы напряжение элементов автоматически поддерживалось в безопасном диапазоне, батарея оснащается BMS платой контроля и защиты. Она автоматически размыкает выходные ключи – отключает АКБ от нагрузки при критическом разряде и от сети при полном заряде. БМС плата оберегает элементы питания и от короткого замыкания. В таких ситуациях напряжение на элементах питания резко просаживается, и мгновенно срабатывает защита от глубокого разряда. Тем самым модуль защиты продлевает срок службы АКБ.
Основой BMS платы выступает микросхема. В ней есть полевые транзисторы, используемые для раздельного управления защитой на протяжении заряда и разряда ячеек. Плата защиты следит, чтобы напряжение на каждой ячейке не превышало 4,2 В и не опускалось ниже 2,3 В. Также в схеме обычно присутствует датчик, замеряющий уменьшение напряжения на полевых транзисторах. Функции измерительного шунта выполняет переходное сопротивление транзисторов. В ряде плат дополнительно используется детектор токовых перегрузок.
Можно ли заряжать литий-ионный аккумулятор без контроллера?
Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.
Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.
Самое простейшее зарядное устройство для любого литиевого аккумулятора — это резистор, включенный последовательно с аккумулятором:
Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.
Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.
Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:
Ur = 5 — 2.8 = 2.2 Вольта
Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.
Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.
Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:
R = U / I = 2.2 / 1 = 2.2 Ом
Мощность рассеивания резистора:
Pr = I2R = 1*1*2.2 = 2.2 Вт
В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:
Iзар = (Uип — 4.2) / R = (5 — 4.2) / 2.2 = 0.3 А
Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).
Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение — электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.
Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).
Зарядка при помощи лабораторного блока питания
Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).
Все, что нужно сделать для зарядки li-ion — это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.
Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.
Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.
Как видите, лабораторный БП — практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.
Модуль TP4056
На основе ИС контроллера зарядного устройства для литий-ионных аккумуляторов TP4056 и приведенной выше принципиальной схемы разработано несколько модулей для зарядки литий-ионных аккумуляторов. На следующем рисунке показан модуль, используемый в этом проекте.
Это крошечный модуль со всеми компонентами, упомянутыми в схеме выше. Если вы заметили, здесь есть разъем Micro USB на верхней стороне платы. Используя его, вы можете заряжать литий-ионный аккумулятор от источника USB.
Кроме этого, здесь есть разъемы для входного напряжения, а также клеммы для подключения аккумулятора. Резистор Rprog на этом модуле составляет 1,2 кОм. Следовательно, этот модуль поддерживает зарядный ток 1A (1000 мА). Стоит отметить, что этот модуль и схема, показанная выше, не включают функцию измерения температуры.
Контроль разряда аккумулятора
Для изучения выходных характеристик модуля схема была несколько изменена. В качестве нагрузки был установлен переменный резистор, включенный последовательно с амперметром к выходным контактам модуля.
Сопротивление нагрузочного резистора было установлено так, что начальный ток разряда составлял около 1.15 А. Т.к. нагрузка была постоянной, соответственно ток в выходной цепи падал с падением напряжения на аккумуляторе.
Как видно из графика, модуль благополучно отрубил нагрузку от аккумулятора в районе 5000 сек. А это значит, что модуль отдавал ток порядка 1 ампера в течении полутора часов и не загнулся. Отличный результат)
Рост напряжения на аккумуляторе, после отключения нагрузки, вызван химическим восстановлением аккумулятора после столь длительной отдачи приличного тока.
Если аккумулятор был полностью разряжен и модуль его отключил, то включение произойдет, при подключении зарядного устройства, как только напряжение на аккумуляторе достигнет уровня в 2.9 — 3 вольта.
Процесс зарядки
Процесс зарядки состоит из нескольких этапов:
- Контроль напряжения подключенного аккумулятора (постоянно);
- Зарядка током 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) до уровня 2.9 В (если требуется);
- Зарядка максимальным током (1000мА при Rprog = 1.2к);
- При достижении на батарее 4.2 В идет стабилизация напряжения на уровне 4.2В. Ток падает по мере зарядки;
- При достижении тока 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) зарядное устройство отключается. Переход к п. 1.
Красный светодиод сигнализирует о зарядке, зеленый (в некоторых версиях плат синий) сообщает, что зарядка закончена.
TP4056 схема подключения с нагрузкой
Модуль tp4056 подключение к аккумулятору 18650
На картинке выше, продемонстрировано использование модуля зарядки при подключении к нагрузке с одним аккумулятором 18650
Обратите внимание, что при отсутствии внешнего источника питания, подключенного к USB-порту или контактам IN, на пины OUT начнет поступать питание от аккумулятора. На выходе будет напряжение 3,7 Вольт, но это можно исправить, используя повышающий преобразователь
TP4056 подключение аккумуляторов 18650
Повер банк на модуле зарядки TP4056
На схеме выше показано, как сделать с помощью модуля зарядки источник бесперебойного питания для микроконтроллера Arduino Uno или power bank. Но для этого следует подключить к модулю TP4056 несколько аккумуляторов, чтобы увеличить емкость батареи и более длительное время работы устройства. Также потребуется любой модуль, повышающий постоянное напряжение до 5 Вольт.
TP4056 схема подключения к Ардуино плате
Как мы уже говорили, данную схему повер банка можно использовать в качестве источника бесперебойного питания для Arduino Nano или Uno. Для этого к повышающему модулю следует подключить USB шнур. Черный провод USB кабеля припаивается к контакту модуля VOUT-, а красный провод к VOUT+. В качестве питания для модуля зарядки можно использовать солнечные панели или блок питания.
Старение и деградация литиевых АКБ
В результате циклического заряда-разряда литиевые аккумуляторы постепенно «стареют» – ионы лития не всегда возвращаются в свое исходное положение, состояние катода меняется, в системе накапливаются продукты окисления. В итоге аккумуляторная батарея медленно и безвозвратно утрачивает часть своей емкости.
Считается, что при потере 30% исходной емкости жизненный цикл батареи завершается. При потере емкости на 50% батарея подлежит утилизации. Рабочий ресурс батареи определяется как количество полных циклов заряда-разряда до тех пор, когда емкость АКБ снизится на 20%. В среднем ресурс Li-ion аккумуляторов составляет 1000 циклов, у моделей вида LiFePO4 – более 2000, а у литий-титанатных – более 20 000.
Описание выводов:
- TEMP — подключение датчика температуры, встроенного в литий-ионную батарею. Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостановится. Контроль температуры отключается замыканием входа на общий провод.
- PROG — Программирование тока зарядки (1.2к — 10к); Постоянный ток зарядки и контроль напряжения зарядки выбираются сопротивлением резистора, между этим пином и GND; Для всех режимов зарядки, зарядный ток может быть выведен из формулы
- GND — Общий;
- Vcc — Напряжение питания, если ток потребления (ток зарядки батареи) становится ниже 30mA, контроллер уходит в спячку, потребляя от контакта BAT ~ 2mkA;
- BAT — Подключение аккумуляторной батареи (ICR, IMR);
- STDBY — Индикация окончания заряда (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
- При подключенной батарее, в течении зарядки — разомкнут, по окончании — замкнут;
- При неподключенной батарее замкнут;
- CHRG — Индикация зарядки (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
- При подключенной батарее, в течении зарядки — замкнут, по окончании — разомкнут;
- При неподключенной батарее, кратковременно включается с периодом 1-4 сек;
- CE — Управление зарядкой. При подаче высокого уровня микросхема находится в рабочем режиме, при низком уровне контроллер в состоянии сна. Вход TTL и CMOS совместим;
Описание выводов:
- TEMP — подключение датчика температуры, встроенного в литий-ионную батарею. Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостановится. Контроль температуры отключается замыканием входа на общий провод.
-
PROG — Программирование тока зарядки (1.2к — 10к);
Постоянный ток зарядки и контроль напряжения зарядки выбираются сопротивлением резистора, между этим пином и GND;
Для всех режимов зарядки, зарядный ток может быть выведен из формулы - GND — Общий;
- Vcc — Напряжение питания, если ток потребления (ток зарядки батареи) становится ниже 30mA, контроллер уходит в спячку, потребляя от контакта BAT ~ 2mkA;
- BAT — Подключение аккумуляторной батареи (ICR, IMR);
- STDBY — Индикация окончания заряда (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
- При подключенной батарее, в течении зарядки — разомкнут, по окончании — замкнут;
- При неподключенной батарее замкнут;
- CHRG — Индикация зарядки (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
- При подключенной батарее, в течении зарядки — замкнут, по окончании — разомкнут;
- При неподключенной батарее, кратковременно включается с периодом 1-4 сек;
- CE — Управление зарядкой. При подаче высокого уровня микросхема находится в рабочем режиме, при низком уровне контроллер в состоянии сна. Вход TTL и CMOS совместим;