Из чего состоит статор асинхронного двигателя

Ток — статор

Ток статора / б — за базисный ток статора принимается амплитуда номинального фазного тока статора.

Ток статора с уменьшением напряжения гари неизменном моменте тоже увеличится, но в меньшей степени, так как ток холостого хода при снижении напряжения уменьшается, что особенно сказывается при небольшой нагрузке двигателя.

Токи статора и ротора, а также эквивалентное активное сопротивление ротора зависят от скольжения и определяются методом, изложенным выше. Так как эти зависимости не могут быть выражены в виде элементарных функций времени, то для определения потерь целесообразно воспользоваться численным интегрированием, для чего формулы ( 17) и ( 18) приведем к более простому виду.

Ток статора следит за изменением крутящего момента на валу ведущих звездочек.

Ток статора при действии токовой отсечки / ют удобно сравнивать с номинальным током двигателя / н, вводя понятие коэффициента отсечки 3 / ют / / н, где / ют — Действующее значение первой гармоники тока при действии отсечки. Очевидно, уменьшение пускового тока при действии отсечки приводит к снижению момента двигателя.

Ток статора, возрастающий в связи с потреблением реактивной мощности, во время асинхронного режима колеблется около среднего значения с частотой 2 ( / о — / J — Поэтому наличие асинхронного хода легко установить по колебаниям стрелки амперметра.

Токи статора, вызванные напряжениями 11 %, являются токами обратной последовательности.

Ток статора в синхронных электродвигателях может увеличиться вследствие перевозбуждения электродвигателя при нормальном напряжении в питающей сети и при нормальном потреблении электроэнергии компрессором. Ток возбуждения должен соответствовать паспортным данным электродвигателя.

Токи статора и ротора определяются на основании схемы замещения рис. 4.2, г, которая может быть получена из схемы рис. 4.2, в.

Ток статора / ь согласно (12.27), равен сумме приведенного тока ротора и тока холостого хода. Зависимость тока статора 1г / С) обусловлена соотношением между намагничивающим ( реактивным) током и активным током двигателя при изменении нагрузки. Реактивная составляющая тока статора определяется в основном током холостого хода, последний же составляет 20 — 40 % от номинального тока и незначительно меняется с изменением нагрузки. Активная составляющая тока статора пропорциональна полезной мощности двигателя. Поэтому зависимость 1г / ( Р2) в диапазоне рабочих нагрузок достаточно близка к линейной.

Ток статора /, легко найти графически по векторной диаграмме ис.

Зависимость скольжения S / S от частоты f / f при работе двигателя с номинальными напряжением и моментами.| Зависимость тока рото.| Зависимость тока статора / / /..

Ток статора при увеличении частоты увеличивается и в тем большей степени, чем меньше ток холостого хода.

Ток статора /, равен сумме приведенного тока ротора и тока холостого хода. Зависимость тока статора /, f ( P2) обусловлена соотношением между намагничивающим током и активным током двигателя при изменении нагрузки. Зависимость / у ( Д) в диапазоне рабочих нагрузок достаточно близка к линейной.

Ток статора в режиме короткого замыкания получим из (3.35) при значениях со.

Соединение «звездой» и его преимущества

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Перемотка обмоток электродвигателя

Перематывать обмотки нужно с помощью шаблона, его мы изготавливаем самостоятельно по размерам корпуса статора. Первое с чего начнём наш ремонт прокладку картона в качестве изоляции от корпуса.

По шаблону изготавливаем первый виток обмотки, затем прокладываем его в паз, не перекусывая проводника, провод должен быть целым, соединённым со всеми витками одной фазы.

Перематывать следует сначала витки одной фазы и укладывать в пазы. После перекусываем проводку, делая выводы свободных концов. Для получившихся витков проделываем хорошую изоляцию картоном.

Аналогичные действия проделываем для каждой отдельной фазы

Особое внимание нужно уделить качеству изоляции электрокартоном, чтобы не допустить межвитковых замыканий. Промаркировать начальные и конечные части обмоток

Обвязка витков необходима. Внешние части формируются в нужную геометрию и обвязываются. Выступать витки с картоном должны за пределы корпуса статора на 5 миллиметров до формирования и обвязки. Для перемотки можно использовать ручной намоточный станок.

Изоляцию прокладывать необходимо таким образом, чтобы исключить касание корпуса мотора в будущем. Условие достаточного изолирования можем проверить омметром, прозвонив обмотки за выведенные концы и проверив сопротивление изоляции на землю-корпус.

Особенности перемотки электродвигателя своими руками

Соблюдать количество витков необходимо очень точно. Мы имеем 6 катушек по 2 области. Разность витков приведёт к различию токов в обмотках и как следствие подгорание витоков.

Не должно быть перехлёста проводников при перемотке. Перематывать ровно с одинаковым расстоянием между проводами, для облегчения укладывания витков в паз статора.

Шаблон можно изготовить по размеру из двух округлых палок, соединив их на нужном расстоянии под количество витков одной обмотки. Геометрия витков не должна отличаться друг от друга. Для помещения витков в статор можно использовать специальное приспособление — трамбовку.

Она представляет собой вид лопатки с толщиной под размер паза и позволяет экономить время укладки при большом количестве двигателей. Следует помнить катушки располагаются в пазах статора со смещением. Необходимое условие работы ротора в электромагнитном поле.

Верхняя часть над витками в пазах статора закрывается электрокартоном. Заготовленные стрелки из изолирующего материала вставляем и просовываем так, чтобы зафиксировать их. Междуфазное изолирование проводим тем же материалом с обвязкой каждого витка. Укладываем витки вдоль передней части статора.

Выводы катушек заправляем в изолирующие трубки и проводим в отверстие, идущее в место установки борно. Трубки должны изолироваться материалом не только имеющей необходимую пластичность, но и хорошую температуростойкость. Провода при работе и корпус электродвигателя будут сильно нагреваться.

Перекусанные концы, оставшиеся после прокладки изоляции, собираем в схему «звезда», соединения обмоток производим методом обычной спайки паяльником. Накладываем на эти места изоляцию-трубки и придаём окончательную форму передней части обмоток.

Фиксируем их кордовой нитью или обвязочной проволокой и приступаем к окончательной процедуре изоляции. Все части, выпирающие за пределы корпуса пазов и статора, хорошо утрамбовываем.

Расчет и построение схемы обмотки статора

Основными параметрами обмотки статора являются:

m – число фаз обмотки;

– число полюсов;

q– число пазов на полюс и фазу;

Z– число пазов статора;

y– шаг секции обмотки;

t — полюсное деление;

а– число параллельных ветвей в фазе обмотки.

Некоторые из этих параметров должны быть заданы, остальные можно рассчитать.

Порядок расчета и построения обмотки статора рассмотрим на примере двухслойной обмотки петлевого типа с диаметральным шагом.

Дано: 2р = 2; m = 3; q = 2; a = 1; .

1. Рассчитать некоторые параметры из числа основных:

Z = 2pmq = 2 3 2 =12 – число пазов статора;

y = bt = 1 6 = 6 – шаг секции;

nгр = 2pm = 2 3 = 6 – число катушечных групп;

2. Изобразить границы развертки поверхности расточки статора пунктирными линиями, разделить развертку на Zравных частей (пазов) и пронумеровать их, разметить полюсные деления.

3. Нанести на развертке активные стороны катушек – верхние левые сплошными линиями, нижние правые – пунктирами. Образовать фазные зоны по q пазов в каждой, желательно разными цветами. В обмотке с укороченным шагом размещать нижние правые стороны секций со сдвигом на (t-y) пазов.

4. Образовать первую секцию первой фазы, соединив лобовыми частями левую верхнюю и правую нижнюю активные стороны. Учесть, что номер паза правой стороны секции равен (y + 1). Аналогично образовать все остальные секции. Показать направление ЭДС проводников (целесообразно только для левых верхних активных проводников секций).

5. Образовать катушечную группу первой фазы под первой парой полюсов. Для этого надо соединить последовательно секции одной фазной зоны так, чтобы их ЭДС совпадали по направлению. Аналогично образуются остальные катушечные группы.

6. Соединить катушечные группы первой фазы в «а» параллельных ветвей так, чтобы ЭДС каждой параллельной ветви совпадали по направлению. То же самое надо сделать для других фаз, выполняя условие сдвига между фазами (в пазах), равном l.Начала и концы фаз: С1 ¸ С4; С2 ¸ С5; С3 ¸ С6.

Пример построения развернутой схемы обмотки показан на рисунке 3.

7. Для наглядности соединения катушечных групп в параллельные ветви построить упрощенную схему обмотки. Для этого пронумеровать катушечные группы на развернутой схеме начиная с первой. Их число равно 2рm. Активные стороны катушечных групп изобразить в виде прямоугольников, расположив их рядом друг с другом для всех трех фаз как показано на рисунке. Каждой паре полюсов соответствуют два ряда прямоугольников, т.е. всего будет горизонтальных рядов. Задние лобовые части обозначить пунктирными линиями между прямоугольниками верхних и нижних (левых и правых) сторон. Передние лобовые части обозначить сплошными линиями – для верхних левых – слева, для нижних правых – справа каждого ряда прямоугольников. Обозначить условное направление ЭДС в катушечных группах – для нечетных номеров – слева направо, для четных номеров – справа налево. Соединить обозначения катушечных групп (ряды прямоугольников) в «а» параллельных ветвей так, чтобы ЭДС в активных сторонах совпадали по направлению. Обозначить начала С1; С2; С3 и концы С4; С5; С6 фазных обмоток на упрощенной схеме обмотки. Пример построения упрощенной схемы обмотки статора показан на рисунке 4.

Рисунок 3. Порядок построения развернутой схемы обмотки статора.

Виды электродвигателей и их особенности

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

  • Электродвигатели постоянного токаИспользуются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
  • Электродвигатели переменного токаПользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
  • Шаговые электродвигателиДействуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
  • СерводвигателиОтносятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
  • Линейные электродвигателиОбладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
  • Синхронные двигателиЯвляются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
  • Асинхронные двигателиТакже, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Способы подключения асинхронных двигателей

Различные модели асинхронных двигателей используются в бытовых кондиционерах, в насосных системах и аппаратуре промышленного назначения. Они, как правило, оснащаются преобразователями частоты, которые в зависимости от предназначения, выполняют постепенный набор оборотов при включении, или плавное, не ступенчатое, переключение скоростей.

Схема подключения обычно дается прямо на корпусе, где маркируются выводящие провода пусковой и рабочей обмотки. В других случаях их можно определить при помощи замеров сопротивления. Величина в Омах в двух вариантах последовательного соединения должна в сумме быть равной показателю сопротивления пары обмоток ротора и статора.

Конденсаторы могут быть установлены по схеме подключения к статорной обмотке, для обеспечения пуска электродвигателя, или в качестве рабочего устройства, подсоединенного к основной обмотке. Возможен и комбинированный вариант с двумя конденсаторами.

Емкость теплообменника зависит от мощности мотора в расчете 7мкФ на 100Вт. Чрезмерный нагрев корпуса после запуска свидетельствует о недостаточной емкости подключенных конденсаторов. Если наблюдается спад мощности и замедление оборотов, следует уменьшить емкость.

Трехфазными двигателями, отличающимися большой мощностью и возможностью автоматического старта оборудуют деревообрабатывающие и токарные станки. К трехфазной сети питания такие моторы подсоединяются в двух конфигурациях: треугольной или в виде звезды.

Частотные преобразователи – важный элемент системы управления двигателем, могут быть заменены симисторами для плавного пуска, которые подключаются по трехфазной схеме. Это позволяет снизить расход электроэнергии и износ мотора, предотвращает перегрев и дает ряд дополнительных возможностей для подключения автоматики.

§ 43. Обмотчик элементов электрических машин 5-го разряда

Характеристика работ. Полная обмотка особо сложных элементов электрических машин. Разметка по схеме, подгонка обмотки и укладка. Соединение и изолировка мест соединения эвольвентной обмотки. Загибка концов секций с числом параллельных проводников свыше 2.

Должен знать: конструкцию применяемого оборудования; методы испытания обмоток; свойства применяемого материала; сложные чертежи и схемы.

Примеры работ

1. Двигатели асинхронные, высокооборотные — полная обмотка и соединение.

2. Двигатели двухъякорные — полная обмотка и соединение.

3. Двигатели многоскоростные — полная обмотка.

4. Роторы асинхронных машин — полная обмотка.

5. Роторы синхронных генераторов — полная обмотка.

6. Якори преобразователей крупных машин — обмотка.

7. Якори электрических машин — петлевая обмотка.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Особенности ремонта коллекторных приводов

У данного типа электромашин чаще возникают механические неисправности. Например, стирание щеток или засорение контактов коллектора. В таких ситуациях ремонт сводится к чистке контактного механизма или замене графитовых щеток.

Тестирование электрической части сводится к проверке сопротивления обмотки якоря. В этом случае щупы прибора двум соседним контактам (ламелям) коллектора, после снятия показаний производится измерение далее по кругу.

Проверка обмотки якоря коллекторного электродвигателя

Отображенное сопротивление должно быть примерно одинаковым (с учетом погрешности прибора). Если наблюдается серьезное отклонение, то это говорит, что имеет место быть межвитковое КЗ или обрыв, следовательно, необходима перемотка.

Особенности ремонта асинхронных электродвигателей

Ремонту асинхронных электродвигателей всегда предшествует диагностика. Благодаря использованию технологичного оборудования и современных методик поиска неисправностей квалифицированные специалисты нашего предприятия с высокой точностью определяют дефекты, а также причины, по которым они возникли. По результатам диагностики принимается решение об объеме выполнения ремонтных работ. Прежде чем говорить об особенностях проведения подобных ремонтных работ, следует выяснить, «слабое место» асинхронных электродвигателей. Наиболее часто в нашу компанию обращаются клиенты, целостность обмотки двигателей которых нарушена. В таких ситуациях потребуется полная перемотка обмотки электродвигателя. Причиной подобных поломок, как правило, становится неверная эксплуатация двигателя (например, перегрев рабочей части) или же длительное использование без проведения плановых осмотров.

Типовые поломки и характер проявления

Многие типовые неисправности асинхронных двигателей возникают по причине естественного износа комплектующих и старения изоляционных материалов. Также сокращается ресурс агрегатов при нарушении установленных заводом правил эксплуатации. Поломки электромоторов делятся на механические и электрические.

Дефекты механического типа проявляются перекосами корпуса или отдельных деталей, ослаблением креплений и повреждением элементов. Перегреваются подшипники, вытекает смазка и прослушивается нехарактерный для нормальной работы агрегата шум. Поломками электрической части являются пробои обмотки статора, короткие замыкания витков на корпус, а также обрывы цепей питания. Характерные для асинхронных электромоторов дефекты проявляются следующими симптомами:

  • затруднительный запуск электромотора;
  • чрезмерный нагрев обмоток статора;
  • недостаточная частота вращения вала электрической машины;
  • повышенный гул на высоких оборотах;
  • неравномерность силы электротока в разных фазах.

Причиной затруднительного запуска агрегата и медленного вращения с гулом является обрыв фазы (или двух фаз) при соединении статорной обмотки по типу треугольника или звезды. Обрыв фазы также является причиной отсутствия вращения мотора и сильного нагрева ротора.

Перегрев статора возникает по причине старения изоляции, установленной между стальными листами, приводящей к замыканию листов статорного сердечника. Если мастерами сервисного центра диагностируется чрезмерный нагрев статора в отдельных местах и невозможность развивать мотором номинальный крутящий момент, то имеет место замыкание в обмотке.

Перегрев всего агрегата может возникать при неисправности вентилятора или узлов подшипника качения, которые при перегреве начинают издавать громкий шум (хруст). Подшипники выходят из строя по причине нарушения балансировки ротора от сильной вибрации, попадания грязи в смазку, критического износа тел качения и нарушения центровки валов. В случае износа вкладышей и поломки дорожек возникает сильный стук.

Как ремонтировать асинхронные двигатели

Если в двигателе есть проблемы, то это проблемы или механического, или электрического характера. В первом случае поломка может сопровождаться сильной вибрацией и характерным шумом. Обычно это указывает на проблемы с подшипником – как правило, в торцевой крышке. Не устраните поломку вовремя – и вал может заклинить, а в итоге из строя выйдут обмотки статора. В это же время может не успеть сработать функция тепловой защиты автоматического выключателя.

Практика показывает, что примерно в 90% неисправностей моторов асинхронного типа появляются проблемы в обмотке статора – в виде обрыва, межвиткового замыкания, КЗ на корпус. В это время короткозамкнутый якорь чаще всего продолжает функционировать исправно. Таким образом, если повреждения двигателя имеют механическую причину, электрическую часть обязательно следует проверять.

Чаще всего проблему можно выявить по внешним признакам и характерному запаху (рис. 1). Если поломку не удалось обнаружить эмпирическим способом, тогда прибегаем к диагностированию и делаем прозвонку на обрыв. Если мы ее обнаружили, выполняем разборку мотора (про это детальнее мы поговорим дальше) и тщательно осматриваем соединения. Когда дефекты не обнаружены, можно сказать, что у нас обрыв в какой-нибудь катушке. Поэтому нужно делать перемотку.

Если после прозвонки обрыв не зафиксирован, тогда мы измеряем сопротивление обмоток, при этом учитываем такие нюансы:

• необходимо, чтобы сопротивление изоляции катушек на корпус стремилось к бесконечности; • нужно, чтобы у трехфазного привода обмотки показывали одинаковое сопротивление; • требуется, чтобы у однофазных моделей сопротивление пусковых катушек превышало эти параметры рабочих обмоток.

Перемотка электродвигателя своими руками в домашних условиях

Техника часто подвергается перегрузкам и механическим повреждениям. Стоит всего раз уронить или что-нибудь пролить на инструмент, как на обмотке ротора появляется ржавчина, а сам якорь смещается. Последствия плачевны: электродвигатель перегревается, искрит и вибрирует. Работа с таким инструментом опасна.

Если у вас есть навыки ремонта техники и минимальный набор инструментов, то устранить неисправность поможет перемотка якоря в домашних условиях. Дело в том, что именно обмотка принимает на себя первые «удары» неправильной эксплуатации. Жилы проводника разрываются и обгорают. Их замена продлит жизнь техники и увеличит производительность двигателя.

Обслуживание обмоток

В процессе эксплуатации все электрические машины нуждаются в мелком и не очень ремонте. Основные признаки неисправности: нестабильная работа, большой нагрев, сильный гул, вибрация. Обмотки в двигателях небольшой мощности, как правило, меняют. Если это двухслойная обмотка, можно заменить только одну катушку.

Стоит замерить сопротивление обмоток как между собой, так и на корпус, а также проверить легкость хода вала. В «Славянке» будут свои характеристики, поскольку для данного типа обмоток это только начало выхода на рынок, и качественных схем на РПЭДЯ пока немного, а значит ремонт может вызвать некоторые сложности.

Внимательно осмотреть статор. Иногда все, что нужно – пайка выводов, идущих в борно. При отсутствии одной из фаз двигатель сильно греется, но не всегда успевает сгореть.

Асинхронные двигатели, при всей своей кажущейся простоте, тем не менее являются сложными электрическими машинами, требующими профессионального подхода. По ним пишутся дипломные работы. Обмоточные схемы для неспециалиста, и даже для начинающего обмотчика, могут показаться сложными и запутанными. Это говорит о том, что лучше будет, если перемотку и ремонт двигателей будут делать специалисты.

Источник

Выводы обмоток электродвигателя — схемы соединения

Обозначение выводов обмоток статора

Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:

  • С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
  • С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
  • С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.

Условно на схемах каждая обмотка изображается следующим образом:

Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:

В зависимости от соединения этих выводов меняются такие параметры электродвигателя как напряжение питающей сети и номинальный ток статора. О том по какой схеме необходимо подключить обмотки электродвигателя можно узнать из паспортных данных.

Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.

Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора. Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт. Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.

Схема соединения обмоток электродвигателя по схеме «треугольник»

Что бы соединить обмотки электродвигателя по схеме «треугольник» необходимо: конец первой обмотки (С4/U2) соединить с началом второй (С2/V1) , конец второй (С5/V2) — с началом третьей (С3/W1) , а конец третьей обмотки (С6/W2) — с началом первой (С1/U1).

Условно на схеме это изображается следующим образом:

На выводы «A», «B» и «C» подается напряжение.

В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:

A, B, C — точки подключения питающего кабеля.

Схема соединения обмоток электродвигателя по схеме «звезда»

Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:

Определение выводов обмоток

Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:

При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.

Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.

В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.

Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».