Развязывающий сетевой трансформатор на 230в для питания передатчиков и связной аппаратуры

Содержание

Для чего нужны трансформаторы тока

Трансформатор тока нулевой последовательности широко используется в организации работы производства, в быту (с его помощью проводят сварочные работы, он нормализуют входящее в дом напряжение, бросок тока, он нормализует работу электросчётчика с целью увеличения безопасности).

Трансформатор является важным инструментом в области электротехники. Текущие уровни электрического тока должны контролироваться в целях безопасности и эффективности работы прочих бытовых и промышленных приборов. Измерительные устройства, подключенные к трансформаторам, позволяют совершать мониторинг в различных местах по всей системе. Они также могут быть использованы для измерения электрического использования здания и выставления счетов или целей проверки.


Трансформатор тока — схема

Заземление корпуса трансформатора

Почти каждое трансформаторное шасси корпуса изготовлено из металла, хотя некоторые маленькие – пластиковые. Если корпус металлический, на нем не должно быть напряжения. Цель трансформатора состоит в том, чтобы сохранить всю электрическую проводимость, содержащуюся в проводах вокруг катушек – никакое электричества не должно течь в железный сердечник или металлическое шасси, окружающее катушки.

Однако в случае неисправности из-за обрыва провода это шасси может быть под напряжением, и, если это произойдет, оно подключается к электрическому тракту с почти нулевым сопротивлением

Очень важно, чтобы металлический корпус трансформатора был прочно соединен с землей, а не только с проводкой первичной цепи

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы. Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом. Импульсные трансформаторы. Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала. Разделительный трансформатор. Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице. Пик—трансформатор. Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

ТИПЫ РАЗДЕЛИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ

Не существует принципиальной конструктивной разницы между силовыми трансформаторами напряжением до 1000 вольт общего назначения и трансформаторами, применяемыми для разделения электрических цепей, то есть, разделительными.

Любой трансформатор обеспечивает гальваническую развязку между первичными и вторичными цепями напряжения по определению.

ГОСТ 30030-93 не предъявляет к разделительным трансформаторным устройствам особых конструктивных требований, которым не удовлетворял бы обычный силовой трансформатор. Так, наличие не менее чем двойной изоляции между электрическими цепями первичной и вторичной обмоток присутствует в любом трансформаторе, а не только в разделительном.

Таким образом, разница заключена только в функциональном назначении устройств.

Разделительные трансформаторы могут быть понижающими, повышающими, а также имеющими коэффициент трансформации 1. Наиболее часто встречаются разделительные устройства этого типа, преобразующие напряжение без изменения его величины, например 220/220 В, 380/380 В.

Изменение уровня напряжения в процессе разделительной трансформации осуществляется с целью обеспечить питанием электроприборы, требующие других номиналов напряжения, отличных от сетевого.

Преобразователи напряжения, служащие в качестве источников питания цепей сверхнизкого напряжения классифицируются ГОСТ как безопасные разделительные трансформаторы. Сверхнизким считается электрическое напряжение, уровень которого не превышает 50 вольт.

Такие источники напряжения могут использоваться для подключения следующих устройств:

  • ламп переносного типа;
  • низковольтного ручного электроинструмента и аппаратуры;
  • детских электрифицированных игрушек.

МЕДИЦИНСКИЕ РАЗДЕЛИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Отдельную категорию приборов представляют разделительные медицинские трансформаторы. Применение этих устройств обусловлено особыми требованиями, предъявляемыми к организации цепей электропитания отдельных медицинских учреждений.

Помещения медицинских учреждений разделены на несколько групп по признакам опасности нарушения режима электропитания и общей электробезопасности.

В частности, помещения, относящиеся к группе 2 (операционные и реанимационные отделения, а также другие помещения, имеющие системы жизнеобеспечения) требуют обязательного применения электрических цепей питания с изолированной от земли нейтралью. Выполнение этого требования достигается путём применения специализированных медицинских трансформаторов.

Электроснабжение системы IT медицинских объектов 2 группы должно также сопровождаться применением устройств автоматического контроля изоляции электрических цепей от земли.

Это объясняется малой величиной токов утечки на землю, возникающих в сетях IT при однофазных замыканиях на землю. Проблема обнаружения повреждений такого рода в сетях с изолированной от земли нейтралью и стала причиной отказа от массового их применения.

При замыкании на землю одной из фаз режим работы оборудования практически не изменяется, уровень напряжения остаётся в норме, поэтому электросеть может длительно находиться в таком состоянии. Однако прикосновение к частям находящимся под напряжением как прямое, так и косвенное перестаёт при этом быть безопасным.

Применение же сложной высокочувствительной автоматики, к которой относятся системы контроля изоляции цепей электроснабжения для массового потребителя практически невозможно.

Кроме этого, сложность применения систем электроснабжения IT заключается в необходимости постройки заземляющего устройства на стороне потребителя. Корпуса оборудования в случае применения IT должны быть соединены с землёй.

Виды разделительного трансформатора

Виды разделительного трансформатора могут быть разнообразными. Их разделяют в зависимости от области применения и количества обмотки:

  1. Если первичная обмотка трансформатора подключается к источникам тока, а вторичная подключается к измерительным приборам, тогда это устройство называется трансформатором тока. Это устройство можно будет использовать в различных измерительных цепях.
  2. Импульсный трансформатор способен преобразовывать полученные сигналы и передавать электрический импульс. Чаще всего эти устройства применяются в технике.
  3. Чтобы преобразовать синусоидальное напряжение многие специалисты используют пик-трансформатор.
  4. Если первичная и вторичная обмотка соединяется напрямую, тогда это устройство можно называть автотрансформатором.
  5. В силовом трансформаторе вы можете встретить несколько видов обмоток. Они предназначаются для преобразования тока с помощью электромагнитной индукции.
  6. Разделительный трансформатор используют для обеспечения нормального тока для фонарей. Устройство представляет собою компактный прибор, который имеет изолированные обмотки. При необходимости портативный прибор можно установить на специальную подставку.

Разделительные трансформаторы могут быть достаточно разнообразными. Если устройство используется в медицине, тогда его называют индивидуальным медицинским разделительным трансформатором. Он способен работать в электрической цепи 220 Вольт. Среди отечественных производителей можно выделить компанию ОСО Электра.

https://youtube.com/watch?v=gQkEuFRdVzU

Особенностью разделительного трансформатора можно считать то, что в этом устройстве практически полностью отсутствует гальваническая развязка с нейтралью и фазой. Благодаря этому вы сможете защитить себя от удара тока. При необходимости вы также можете подсоединить специальный блок, который будет управлять всеми необходимыми процессами. Для бытовых нужд обычно производители используют повышающий разделительный трансформатор. Он может быть бытовым или промышленным. При необходимости можете прочесть про намотку тороидального трансформатора.

В последнее время также могут применяться разделительные трансформаторы встроенные или специальные. Также многие устройства могут работать с номинальным первичным напряжением. Частота постоянного тока не должна превышать 50 Гц.

Это интересно: Реактивное сопротивление или импеданс трансформатора (видео)

Как сделать самому разделительный трансформатор

Аппарат небольшой мощности несложно изготовить самостоятельно, при наличии подобных навыков и элементарных знаний в области электротехники.

Последовательность операций:

  • на двух идентичных сердечниках выполняются по две половинных обмотки – катушки разделяются напополам;
  • пара половинных обмоток соединяется последовательным способом;
  • дополнительно можно оборудовать аппарат дросселем или стабилизатором.

Детальнее схема устройства и порядок соединения полуобмоток показан на схеме:

Аппарат может использоваться для запитывания мастерской или другого вспомогательного помещения. Перед подключением к стационарной электросети, устройство необходимо проверить электрическим током небольшой величины. В качестве потребляющего устройства подойдёт обычная лампа небольшой мощности.

https://youtube.com/watch?v=ECSfcUYnj_4

https://youtube.com/watch?v=IZ7ADoF2_7c

Как работает трансформатор?

Уже сегодня создано огромное количество преобразователей тока, существуют модели низковольтные и высоковольтные. Принцип работы трансформатора достаточно прост — понижающий трансформатор отвечает за снижение поступающего тока, повышающий наоборот — увеличивает напряжение до высшего значения.

В бытовых целях это очень важное устройство, обеспечивает стабильную работу и полную безопасность домашних электрических приборов

Приведем простой пример. Во многих домах от сети поступает ток 385 Вольт, а стандартные бытовые приборы работают только от 220В. В таком случае без понижающего трансформатора не обойтись, поэтому придется купить однофазный или трехфазный преобразователь.

Преобразователь 380 Вольт — промышленного типа, трехфазный. Преобразователь 220 Вольт — стандартный бытовой, однофазный.

При использовании стандартного бытового трансформатора, его задача будет более простая, ведь в зависимости от модели он меняет ток на показатель 12, 36, 42 Вольта (зависит от требования бытовых приборов).

Принцип действия конструкции прост — большее значение тока проходит через одну обмотку, после этого со второй обмотки выдается меньший ток. Это стало возможно благодаря тому, что на одной обмотке расположено больше витков, а на второй меньшее количество. Если говорить на научном языке, то такой процесс называется электромагнитная индукция.

Применение

Основное применение первичных преобразователей напряжений – подача питания на обмотки измерительных приборов и подключение реле защиты в сетях 380 В и выше. Трансформаторы позволяют расширить диапазоны измерений и изоляцию реле от высоких межфазных потенциалов. Включение выводов первичных обмоток между фазой и землей дает возможность градуировать шкалы приборов с учетом коэффициента трансформации, что позволяет контролировать первичные параметры линий ЛЭП.

Изменение параметров напряжений в первичных цепях влияет на поведение переменных магнитных потоков. Эти возмущения фиксируются вторичными обмотками, которые реагируют изменением амплитуды тока и частоты колебаний. Сигналы поступают на различные защитные устройства, которые автоматически отключают участки линий с КЗ и с другими критичными отклонениями.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный трансформатор

Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены.

Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора.

Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.


Схема режима работы трансформатора тока.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны.

Будет интересно Как устроен силовой трансформатор и где его применяют?

Поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения. Для трансформатора в режиме активной нагрузки справедливо равенство:

U_2/U_1 =N_2/N_1

где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке.

Если U2> U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

Масляные трансформаторы

Данный тип трансформаторов считается наиболее экономичным. Они лучше всего подходят для наружной установки. Внутри помещений они могут устанавливаться на уровне первого этажа, в специальных камерах с двумя наружными дверьми.

Эксплуатация масляных трансформаторов отличается специфическими особенностями. Они должны обязательно оборудоваться маслоприемными устройствами в виде ям или приямков, способных к сбору примерно 20-30% общего количества масла, залитого в трансформатор. Глубина таких ям должна быть не менее 1 м. Следует помнить, что масляные установки запрещается размещать в подвалах и на вторых этажах зданий.

Состав электрощитового набора

Аппарат предназначен для безопасного регулирования системы распределения электроэнергии. Он имеет вид ящика с дверцей. В состав обязательно входят:

  • Сертифицированный прибор учета электроэнергии. Должен иметь отметку о прохождении поверки в аккредитованной метрологической организации.
  • Электронный аппарат защиты – УЗО. Предохраняет владельца гаража и электроприборы от утечки тока.
  • Трансформатор, предназначенный для того, чтобы понижать напряжение.
  • Автоматытипа ПАР или однофазные пакетники. В случае короткого замыкания устройства прерывают подачу тока.
  • Ящик, предназначенный для сборки щитка.

Перечисленные составляющие позволяют собрать гаражный электрический щиток для подключения силового кабеля с входным напряжением в 220 В. Все монтажные работы по подводке трехфазного напряжения и установке электрических точек делают исключительно специалисты, имеющие допуск к электросетям до 1000 В.

Согласно установленным нормам устройства электропроводки и освещения, в подвалах и ямах для осмотра авто питание осветительных приборов не должно превышать 36 В. Чтобы понизить напряжение следует предусмотреть подключение трансформатора для гаража. Для установки осветительных приборов в яме понадобится наличие клеммника, подсоединенного к выводу контура, имеющего соответствующее напряжение. Отдельная клемма должна подключаться к шине заземления.

Простейший электрощиток

Аппарат необходим для установки учетного устройства и элементов защиты

В гараже важно контролировать расход электроэнергии. Современный счетчик не только ведет учет потребления, но и повышает уровень безопасности