Расчет токов трехфазного короткого замыкания

Содержание

Особенности расчёта

Расчёт токов трёхфазного оборудования производится с применением специальных формул.

Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:

  1. Трёхфазная система должна считаться симметричной.
  2. Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
  3. Момент возникновения КЗ принято считать при максимальном значении силы тока.
  4. ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.

Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.

Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи. Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.

Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.

Калькулятор электротехнических величин

Хотите быстро рассчитать силу тока, напряжение, мощность или другие электрические величины. Воспользуйтесь калькулятором электрических величин. С его помощью Вы сможете без особых трудов посчитать:

  1. Силу тока, напряжение, мощность, используя Закон Ома.
  2. Рассчитать напряжение, при котором может работать резистор.
  3. Напряжение однородного поля (плоский конденсатор).
  4. Сопротивление цепи при параллельном соединении.
  5. Определение емкости при параллельном соединении.
  6. Определение емкостного сопротивления конденсатора переменному току.
  7. Индуктивность катушек соединенных параллельно, без взаимоиндукции.
  8. Реактивное сопротивление индуктивности.
  9. Мощность в цепи.
  10. Мощность, выделяющаяся в нагрузочном резисторе.

В архиве находятся две версии программы: 1. Grand 1.2 и Grand 1.3.

В версию Grand 1.3 добавлены, краткие справочные материалы по основным электрическим величинам. Когда будете запускать программу Grand 1.3, возможно, будет ругаться антивирусник, не волнуйтесь, программа проверена и не содержит вредоносного ПО.

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Программа выбора емкости конденсатора для электродвигателя, позволяет рассчитать рабочую емкость С, при.

Данный калькулятор расчета основных измеряемых величин в электротехнике, выполненный в программе Microsoft.

Представляю вашему вниманию программу проверки трансформаторов тока (ТТ) на 10%-ю погрешность по.

В данной статье я хотел бы Вас познакомить с программой SICHR версии 16 от (Чехия).

Доброго времени суток! Представляю Вашему вниманию последнею версию программы по расчету уставок.

Популярное изложение закона Ома

До детального изучения явления нужно вспомнить базовые определения из школьного курса физики. Основные зависимости описывает известная формула (закон Ома):

I = U / R,

где:

  • I – сила (величина) тока в амперах (А), которая определяет плотность энергии в контрольном участке и при достаточной величине способна разогреть проводник до высокой температуры;
  • U – напряжение (ЭДС, разница потенциалов между определенными точками);
  • электрическое сопротивление (R) – препятствует прохождению электрического тока, увеличивается при нагреве проводника.

Закон Ома для участка цепи

«Магический» треугольник помогает запомнить основные формулы для расчета. Взаимные зависимости рассматриваемых параметров часто поясняют на примере с трубопроводом:

  • ток (движение заряженных частиц) подобен потоку;
  • напряжение – разница давления на входе и выходе;
  • сопротивление – внутренний диаметр, ограничивающий пропускные способности транспортной системы.

По приведенным аналогам несложно догадаться о том, что тонкий (толстый) проводник затрудняет (упрощает) прохождение тока. Дополнительные ограничения объясняются проводимостью определенного материала и наличием посторонних примесей.

https://youtube.com/watch?v=k2DtvAAMknI

https://youtube.com/watch?v=AsLPkkmXXw0

Взаимосвязь короткого замыкания и силы тока

Рассмотрев физику процесса, можно с большей точностью установить взаимную связь силы тока и короткого замыкания в различных ситуациях. Любое устройство или оборудование, подключенное к источнику тока, создает ситуацию, близкую к короткому замыканию. Каждый прибор обладает сопротивлением и берет на себя всю нагрузку, за счет чего и обеспечивается его нормальная работа. Однако, при заметном снижении сопротивления, сила тока сразу же заметно возрастет. Взаимосвязь между напряжением, сопротивлением и силой тока определяется законом Ома.

Для участка цепи существует упрощенная формула, которая будет выглядеть следующим образом: I=U/R. В ней соответственно I будет силой тока, U – сетевым напряжением и R – электрическим сопротивлением. Проводники на этом участке условно имеют однородную структуру, а сама цепь дополнена резистором. Параметры источника тока в расчет не берутся.

В самом упрощенном варианте ток при КЗ можно вычислить следующим образом: Iкз = Е/r, где Е – ЭДС источника тока, r – сопротивление нагрузки. Из этой формулы хорошо видно, как при сниженном сопротивлении будет расти сила тока. Сама по себе данная ситуация не представляет какой-либо угрозы, но здесь дополнительно вступает в действие закон Джоуля-Ленца. Он указывает на выделение тепла во время течения по проводнику электрического тока и определяется не только количественной, но и временной характеристикой. Суть этого закона заключается в том, что с повышением силы тока за единицу времени будет выделено и большее количество теплоты.

Сила тока КЗ батареи

Все положения, рассмотренные выше, подходят и к случаям короткого замыкания источников питания. Типичным примером служит аккумуляторная батарея, в состав которой входит отрицательный электрод – анод и положительный – катод. Один от другого их отделяет твердый или жидкий электролит. Происходящие внутри устройства химические реакции, формируют электрический заряд, обеспечивающий работу подключенного прибора.

По сути, батарею можно считать своеобразным участком цепи, на которых распространяются все установленные правила. Следовательно, нарушенная изоляция, также приводит к короткому замыканию и последующим процессам. Многократный рост силы тока приводит к выделению тепла, под действием которого источник электроэнергии перегревается и разрушается, с одновременным закипанием и разбрызгиванием электролита.

https://youtube.com/watch?v=Uz6d1MwZHVc

Основные причины

Если подключение устройства в розеточную группу приведёт к превышению суммарной мощности, его следует подсоединить к другой цепи

Автомат в распределительном щитке может сработать вследствие следующих причин:

  • подключение слишком большой нагрузки;
  • короткое замыкание;
  • неисправность самого автомата.

При включении в сеть большого количества электроприборов в цепи может возникнуть ток, значение которого превышает допустимое для этой цепи.

Это может случиться, когда одновременно включаются чайник, машина для стирки, электроплита и другие приборы. В этом случае срабатывает автомат, который отключает сеть.

В современных автоматах на превышение тока реагирует тепловой расцепитель.

При частых срабатываниях автоматического выключателя категорически запрещается его замена на аппарат с большим номиналом!

В случае короткого замыкания происходит резкое увеличение тока. Тогда срабатывает электромагнитный расцепитель автомата. При этом в катушку втягивается сердечник и через рычаги размыкает контакты. Время срабатывания этого расцепителя не превышает 0,02 с.

В некоторых случаях виновником отключения может стать неисправность самого автомата, представляющего довольно сложную конструкцию.

Возможные последствия

Короткое замыкание — самая частая причина пожаров в квартирах и домах

Последствиями внезапного отключения сети при срабатывании автомата, в худшем случае, могут быть перерывы в компьютерной игре или в работе стиральной машины. Гораздо более тяжёлые последствия могут возникнуть, если автомат не сработает. Например, если он откажет при коротком замыкании, то может возникнуть возгорание, которое часто приводит к пожару.

Что делать

Если у вас в квартирном щите до сих пор пробки, то следует покончить с этим раз и навсегда, установив качественные автоматические выключатели

В случае отключения сети вначале желательно разобраться в том, почему выбивает автомат в щитке. Для этого можно использовать следующий алгоритм:

  1. Определить суммарную мощность всех подключённых электроприборов.
  2. Разделить суммарную мощность на напряжение 220 В и определить суммарный потребляемый ток (Iп).
  3. Сравнить потребляемый ток с номинальным током (Iн) автомата.
  4. Если Iп > Iн, то необходимо сократить число включённых приборов таким образом, чтобы Iп

Если неисправность связана с появлением короткого замыкания, то вначале необходимо проверить каждый из подключённых приборов. Это можно сделать, например, путём их поочерёдного отключения. Если окажется, что при отключении всех электроприборов в цепи остаётся короткое замыкание, то следует проверить саму электропроводку, в том числе такие её элементы, как выключатели или розетки.

Если окажется, что автомат отключается сам по себе независимо от наличия неисправностей в цепи, то его следует заменить на исправный.

Поскольку по технике безопасности замену такого прибора необходимо производить при отключённом напряжении, подводимом к щитку, то эту замену лучше поручить электромонтёру.

В большинстве случаев срабатывание автомата в щитке — его штатная работа, и то, что он её выполняет — очень хорошо, так и должно быть, но при условии, что сам автоматический выключатель исправен. Для проверки работы электрической сети в квартире или доме лучше пригласить специалиста.

Причины возникновения короткого замыкания

Логическая защита шин

Несмотря на то, что этот нежелательный аварийный процесс считается случайным, на его создание могут влиять следующие причины, связанные с некачественным монтажом или неправильной эксплуатацией электрического оборудования (цепей). Вот основные причины появления короткого замыкания:

  1. Снижение качества изоляции токоведущих проводников. Это одна из самых распространенных причин перехода сети в режим КЗ, который возникает вследствие пересыхания, механического повреждения или разрушения изоляции между проводниками с разным потенциалом. Чаще всего все перечисленные причины снижения сопротивления изоляции и её разрушения связаны с воздействием на неё вредных факторов, на которые она не рассчитана. Например, при длительном воздействии солнечных лучей на изоляцию, которая боится ультрафиолетового излучения, происходят пересыхание, потрескивание и, как следствие, короткое замыкание.

Нужно отметить! У любой изоляции есть свой срок использования, старение её приводит к аварийным режимам.

  1. Изменение физических параметров электрической сети, например, перенапряжение. Такое явление возможно во время грозы, а именно попадания молнии в проводник с током.
  2. Неправильная коммутация, ошибки монтажа или укладки кабеля, с несоответствием техническим условиям, заявленным заводом производителем.

Любой электромонтажник или электромонтер не застрахован от ошибочных, неправильных действий при монтаже электропроводки или при выполнении оперативных переключений. В низковольтных цепях такие ошибки менее опасны, чем в высоковольтных цепях с мощными источниками энергии, например, на высоковольтных силовых подстанциях электроснабжения. Даже с современными элементами и устройствами защиты от превышения нагрузок процесс КЗ в силовых высоковольтных цепях опасен не только для оборудования, но и для обслуживающего персонала, из-за появления мощной электрической дуги.

  1. Длительная эксплуатация электрического оборудования и линий в режиме перегрузок или в условиях с завышенными температурами окружающей среды. Это приводит к перегреву изоляции между обмотками электрооборудования, значит, происходит снижение сопротивления изоляции, которое в какой-то момент достигает критического значения.

Выполнение монтажа качественными материалами, правильная организация работ в электроустановках, а также своевременное обслуживание, с заменой повреждённых участков линии, снизят риск появления короткого замыкания.

Методы поиска короткого замыкания

Заранее найти место возникновения этого явления довольно сложно. В большинстве случаев до него нет дела ни специалистам, ни обычным пользователям. Однако это поможет вовремя нейтрализовать его, что приведет к невозможности появления пагубных последствий. Благодаря своевременному реагированию, экономятся финансовые средства и время. Методов как определить короткое замыкание существует несколько:

  • визуальный осмотр проводки (на не должно быть разрывов и оголенных проводов);
  • использование мультиметра или мегаомметра;
  • по звуку;
  • исключение.

Провода, являющиеся составной частью токоведущего кабеля, могут соприкасаться между собой. Если они оголены, то именно это и является явной причиной КЗ. Подобные повреждения, как правило, находятся в распределительных коробках и других узлах электроснабжения (розетки, выключателях и так далее). Подгорелая изоляция кабеля — явное место, где потенциально может образоваться КЗ.

Применение специальных приборов помогает измерить значение сопротивления цепи. В их составе имеется 2 провода: один из них подключается к фазе, а другой — к нолю (далее к заземлению). Если на дисплее прибора отображается 0, значит целостность проводки в норме, если какое-либо другое значение — контакты соприкасаются

Обратите внимание, что напряжение мультиметра довольно маленькое. Им можно измерять цепи, протяженностью не более 3 метров

Поиск места возникновения короткого замыкания по звуку — народный метод определения этого явления. Для этого необходимо тщательно прислушиваться у всех соединений. В месте контакта будет слышно характерное потрескивание. Иногда возникает запах горелой пластмассы и изоляции. Пользоваться таким способом нахождения КЗ следует пользоваться только в крайнем случае при недоступности других методов.

Очень часто бывает, что виновником является подключенный электроприбор. Его включение сразу приведет к срабатыванию предохранителя. Это приведет к моментальному отключению электроснабжения участка. Найти такой прибор можно методом исключения, поочередно включая все устройства.

Специалисты настоятельно рекомендуют не применять устаревшие способы поиска КЗ. В большинстве случаев они не показывают должной точности и эффективности. Если возникла необходимость найти место КЗ, необходимо пригласить профессионалов, которые будут использовать качественное и точное оборудование.

Как избежать КЗ?

Понятно, что полностью избежать этого неприятного явления невозможно – тут велик элемент случайности. Однако, в наших силах существенно снизить риск возникновения КЗ. И тут колоссальное значение приобретает регулярный осмотр и техническое обслуживание электросетей.

Примеры превентивных мер:

  • чистка токоведущих частей, контактов и изоляторов от пыли и грязи,
  • проверка защиты от влажности,
  • проверка целостности укладки и монтажа,
  • ограждение и дополнительная защита опасных участков,
  • вывешивание и наклеивание предупреждающих табличек и надписей,
  • проверка и протяжка контактов,
  • обрезка деревьев и устранение других опасных факторов.

Как думаете, какие нужны превентивные меры защиты от КЗ на фото ниже?

Водосточная труба, электрощиты и гофра, уходящая под плитку. Инсталляция в старой части Батуми

В серьезных организациях регулярно проводят проверку кабелей и контактов тепловизором, а также измерение сопротивления изоляции и испытания изоляции высоковольтным напряжением.

Методы устранения и профилактика

Если производилась частичная замена проводки, следует проверять надежность мест соединения, целостность изоляционного слоя.

Раз в несколько месяцев следует проверять источники света, осветительную сеть и силовые провода. Короткое замыкание может возникать со временем. Выявить его можно по изменению цвета устройств или их плавлению. В квартире обязательно должны стоять автоматические выключатели. На мощные электроприборы ставятся отдельные средства защиты, которые должны сработать при аварийной ситуации.

При самостоятельном проведении монтажа электропроводки важно правильно рассчитывать сечение кабеля. Если оно не способно выдержать мощность всех подключаемых приборов, будет происходить перегрузка, приводящая к короткому замыканию. Кабели не должны укладываться тесно друг с другом – это может привести к повреждению защитного слоя

Кабели не должны укладываться тесно друг с другом – это может привести к повреждению защитного слоя.

  • Розетки, шнуры питания и другие замкнувшие элементы сети лучше заменить.
  • Для устранения коротких замыканий в электроприборах пользуйтесь услугами специализированных мастерских, либо ремонтируйте самостоятельно (при наличии знаний и опыта).
  • Разрыв кабеля ликвидируйте путём замены повреждённого участка новым проводом. При этом следите, чтобы коэффициент сопротивления изоляции соответствовал величине тока.

В целях профилактики проверяйте исправность контактов. Вовремя меняйте розетки. Используйте только стандартные электроприборы. Не допускайте превышения уровней нагрузок. К источнику тока подключайте только исправные электроинструменты и другую бытовую технику.

На рис. 5 показаны последствия эксплуатации электрогенератора с неисправным шнуром.

Рисунок 5. КЗ неисправного шнура

https://youtube.com/watch?v=5jS4cQFJXIM

Помните, что ваша безопасность во многом зависит от надёжности системы электроснабжения жилых и бытовых помещений. Это тот, из немногих случаев, где экономия не уместна.

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания.

Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.

  1. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  2. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  3. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  4. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗ Процентное соотношение к общему числу (%)
К(З) 5,0
K(2) 10,0
K(1) 65,0
K(1,1) и K(1+1) 20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

Суть процесса

При включении любого электрического прибора в цепь происходит замыкание линии. По ней начинает проходить электроток. Он течёт от источника питания через нагрузку (потребителя) и возвращается. Сила тока определяется нагрузочным сопротивлением элементов, подключённых к цепи. Если R большое, величина силы тока небольшая. В ином случае она может достигать больших значений. Ситуация, при которой происходит электрическое соединение плюсового и минусового контакта электрической линии, называют коротким замыканием.

Например, можно представить простую цепь, состоящую из источника тока и лампы накаливания. Чтобы она засветилась, один из выводов источника (фаза) следует подключить к одному из электродов лампы, а другой — ко второму контакту осветительного устройства (нулевой). В замкнутой цепи появится ток, который, проходя по вольфрамовому проводнику лампы, приведёт к его разогреву с излучением света. Такая работа называется штатной или нормальной.

Но если по каким-то причинам возникнет дополнительный контакт между выводами источника питания, причём его сопротивление будет пренебрежительно мало, практически весь генерируемый ток устремится по нему. Произойдёт шунтирование фазы питания с нулём. В результате всё напряжение окажется приложенным к выводам генерирующего устройства. И сила тока, возникшая в цепи, будет определяться только внутренним сопротивлением источника питания.

Сила тока резко возрастёт. Учитывая закон Джоуля — Ленца, определяющий тепловое действие электротока, возрастёт нагрев электрической цепи. Если сила тока при КЗ вырастет в 2 раза, выделившееся тепло увеличится в 40 раз. Явление часто сопровождается расплавлением проводов и возгоранием

Вот поэтому так важно уметь выполнять расчёт токов короткого замыкания для 110 В, 220 В или 380 В. Это те напряжения, что используются в быту и промышленности, обеспечивающие работу электроприборов и установок.

Различают следующие виды КЗ:

  • однофазное — установление контакта между фазовой линией и нулевой;
  • двухфазное — замыкание фаз между собой или их общее соединение с землёй;
  • трёхфазное — наблюдается в сетях 380 вольт при соединении трёх фаз.

Проведение расчетов

Для выполнения расчетов трёхфазного и однофазного тока привлекаются квалифицированные специалисты. Они отвечают не только за математическую часть, но и за дальнейшее поведение рассчитанной схемы в условиях эксплуатации. Вычисления, сделанные в домашних условиях, требуют дополнительной проверки, чтобы исключить вероятность ошибок. До начала расчетов начинающие электрики должны изучить основные понятия электричества, свойства проводников и диэлектриков, роль и значение надежной изоляции.

Все вычисления, в том числе затрагивающие трехфазное оборудование, выполняются по специальным методикам, включающим в себя различные формулы.

Следует обязательно учесть ряд особенностей:

  • Все трехфазные системы условно относятся к симметричным.
  • Питание, подведенное к трансформатору, считается неизменной величиной, приравненной к его номиналу.
  • Сила тока принимает максимальное значение в момент возникновения аварийного режима. Потребуется расчет ударного тока короткого замыкания.
  • Влияние ЭДС источника питания, расположенного на большом расстоянии от места появления короткого замыкания.

Параметры ТКЗ при необходимости дополняются результирующим сопротивлением проводников. С этой целью показатели мощности приводятся к единому значению. Для таких расчетов нежелательно использовать обычные формулы, изучаемые на курсе физики. Здесь вполне возможны ошибки из-за разных номиналов напряжения на различных участках цепи в момент начала аварийного режима. Единая базовая мощность делает расчеты более простыми, существенно повышая точность результатов.

Номинальное напряжение, используемое при вычислениях, берется с увеличением на 5%. В сетях 380 вольт этот показатель составит 400В, а при 220В итоговое значение будет 231В.

Пример приближенного расчета токов короткого замыкания в сети 0,4 кв

Часто инженерам для проверки отключающей способности защитных аппаратов (автоматические выключатели, предохранители и т.д.), нужно знать значения токов короткого замыкания (ТКЗ). Но на практике не всегда есть возможность быстро выполнить расчет ТКЗ по ГОСТ 28249-93, из-за отсутствия данных по различным сопротивлениям, особенно это актуально при расчете однофазного тока короткого замыкания на землю.

Для решения этой задачи, можно использовать приближенный метод расчета токов короткого замыкания на напряжение до 1000 В, представленный в книге: «Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.».

Рассмотрим на примере расчет ТКЗ в сети 0,4 кВ для небольшого распределительного пункта, чтобы проверить отключающую способность предохранителей, используя приближенный метод расчета ТКЗ представленный в книге Е.Н. Зимина.

Обращаю Ваше внимание, что в данном примере будет рассматриваться, только расчет ТКЗ для предохранителей FU1-FU6 из условия обеспечения необходимой кратности тока короткого замыкания. Расчет

Расчет

Известно, что двигатели получают питание от трансформатора мощность 320 кВА. Кабель от трансформатора до РЩ1 проложен в земле, марки АСБГ 3х120+1х70, длина линии составляет 250 м. На участке от распределительного щита ЩР1 до распределительного пункта РП, проложен кабель марки АВВГ 3х25+1х16, длина линии составляет 50 м. Однолинейная электрическая схема представлена на рис.1.

Рис.1 – Однолинейная электрическая схема 380 В

Расчет токов к.з. для точки К1

Для проверки на отключающую способность предохранителя FU1, нужно определить в месте его установки ток трехфазного короткого замыкания.

1. Определяем активное и индуктивное сопротивление фазы трансформатора:

где:

  • Sт – мощность трансформатора, кВА;
  • с – коэффициент, равный: 4 – для трансформаторов до 60 кВА; 3,5 – до 180 кВА; 2,5 – до 1000 кВА; 2,2 – до 1800 кВА;
  • d – коэффициент, равный: 2 – для трансформаторов до 180 кВА; 3 – до 1000 кВА; 4 – до 1800 кВА;
  • k = Uн/380, Uн — номинальное напряжение на шинах распределительного пункта.

2. Определяем активное и индуктивное сопротивление кабеля марки АСБГ 3х120+1х70:

где:

  • L – длина участка, км;
  • Sф и S0 – сечение проводника фазы и соответственно нулевого провода, мм2;
  • а – коэффициент, равный: 0,07 – для кабелей; 0,09 – для проводов, проложенных в трубе; 0,25 – для изолированных проводов, проложенных открыто;
  • b – коэффициент, равный: 19 – для медных проводов и кабелей; 32 – для алюминиевых проводов и кабелей;

3. Определяем полное сопротивление фазы:

4. Определяем ток трехфазного короткого замыкания:

Для проверки на отключающую способность предохранителей FU2 – FU6, нужно определить однофазный ток короткого замыкания на землю в конце защищаемой линии.

Расчет токов к.з. для точки К2

5. Определяем суммарные активные и индуктивные сопротивления кабелей цепи короткого замыкания:

6. Определяем полное сопротивление петли фаза-нуль:

где: Zт(1) = 22/Sт*k2 – расчетное полное сопротивление трансформатора току короткого замыкания на землю, k=Uн/380.

7. Определяем ток однофазного короткого замыкания на землю:

Аналогично выполняем расчет ТКЗ для точек К3-К6, результаты расчетов заносим в таблицу 1. Зная токи к.з., можно теперь выбрать плавкие вставки для предохранителей FU1 – FU6, исходя из условия обеспечения необходимой кратности тока короткого замыкания.

Таблица 1 – Расчет токов к.з.

Точка КЗ Rф, Ом R0, Ом Хф, Ом Х0, Ом Rт, Ом Хт, Ом Zф-0, Ом Zт, Ом Iк.з.(3), А Iк.з.(1), А
К1 0,07 0,02 0,0078 0,023 0,089 2468
К2 0,241 0,374 0,022 0,022 0,674 326
К3 0,374 0,598 0,0231 0,0231 0,99 222
К4 0,174 0,278 0,022 0,022 0,512 429
К5 0,694 1,11 0,0259 0,0259 1,8 122
К6 0,174 0,278 0,022 0,022 0,512 429

Всего наилучшего! До новых встреч на сайте Raschet.info.

Как измеряется ток КЗ при помощи приборов

Есть старый, «дедовский» способ измерения тока КЗ — с использованием понижающего трансформатора, амперметра и вольтметра. Далее нужен расчет по формулам.

Есть и другой, экстремальный способ — подключают амперметр и вручную создают короткое замыкание, замыкая цепь. Это не наш метод — мало того, что он неточен, но при таком «измерении» электросеть подвергается экстремальной нагрузке. К тому же не факт, что защита выбрана правильно, поэтому можно просто-напросто сжечь электропроводку.

Я в школьные годы решил как-то проверить «ток в розетке» этим методом и воткнул свой новенький тестер в режиме амперметра в розетку. Результат — в доме выбило «пробки», в тестере сгорел шунт, а я получил бесценный опыт.

Сейчас большинство приборов вычисляют полное сопротивление петли «фаза-ноль», а затем автоматически пересчитывают полученное значение в ток КЗ. Делать это возможно методом падения напряжения, подключая к точке измерения нагрузку (резистор) известного сопротивления. Номинал резистора обычно равен 10 Ом, время измерения — 30 мс (полтора периода напряжения). Такое измерение не перегружает сеть и в то же время обеспечивает максимальную точность, не вызывая срабатывания автоматических выключателей — тепловой расцепитель за такое время не успеет сработать, а электромагнитному не хватит величины испытательного тока.

При этом ток КЗ измеряется во всех вариантах, где он может возникнуть: «фаза-нейтраль», «фаза-защитное заземление», «фаза-фаза». Чтобы правильно провести измерения тока КЗ при помощи приборов, нужно обладать достаточной квалификацией и внимательно изучить инструкцию к прибору. Например, необходимо учитывать сопротивление измерительных проводов. Важен и тот факт, что полученное значение тока КЗ нужно пересчитать под реальное напряжение в сети.