Стационарная лампа
Для подсветки рабочего пространства за столом самоделки электронные предлагают много вариантов. Один из них предусматривает использование люминесцентной лампы и металлического профиля, который используется для крепления гипсокартонных листов.
Профиль имеет форму буквы «П» в разрезе. Благодаря этому он будет служить не только держателем, но и направлять (отражать) свет сверху вниз.
Профиль необходимо согнуть. Для этого две стороны надрезаются. После сгиба края соединяются саморезами, чтобы придать жесткость. Лампа имеет выключатель. Для него делаем отверстие в профиле. Далее лампа крепится к основанию. Усилить прочность профиля поможет прямоугольный его вариант. Для крепления к столу к одному краю профиля прикручиваем уголок из металла.
Делаем своими руками отрезные дисковые станки по металлу для домашней мастерской
Станки дисковые – полезные приспособления в домашнем хозяйстве. С их помощью можно быстро разрезать любые металлы под углом в 45 или 90⁰. Монтировать такое устройство обязательно на жесткое основание. Если поставить другой диск можно работать со всевозможными материалами, а не только с металлическими листами. Покупать готовую установку достаточно дорого, поэтому легче и интереснее сделать станок своими руками.
Готовый вариант станка для резки
В простом варианте создания самодельного дискового отрезного станка понадобятся следующие материалы и инструменты:
- угол металлический №25;
- швеллер №10;
- вал и профильная труба;
- сварочный аппарат;
- подшипник;
- электромотор и коробка для проводов;
- пусковой механизм, катушка и дрель.
После подготовки всех инструментов и материалов для собственного станка необходимо выбрать подходящий чертеж самодельного отрезного станка по металлу. Своими руками можно сделать приборы по следующим схемам:
Вариант подробного чертежаСхема станкаЧертеж несложного устройстваСамодельная маятниковая пила
Собрат станок для резки металлических листов на основе болгарки несложно, если вы умеете работать с различным инструментом и готовы вырезать заготовки. Ход работы по сборке собственного отрезного станка следующий:
- Из уголка нарежьте заготовки для рамы, размеры которой должны быть 40*60*120см. Сварите элементы в общий каркас. А в качестве направляющей приварите швеллер.
- На швеллер прикрепите пару стоек в вертикальном положении при помощи болтов. Из трубы необходимо сделать раму 45 на 60 см для установки мотора и вала.
- На задней части рамы устанавливаете пилу с двигателем. Лучше подобрать асинхронный мотор, мощностью от 1,5 до 3 кВт. Затем, сделайте вал с фланцами, шкивом и опорами. При этом фланец выступает только на 3,2 см.
- Закрепите подшипник на вал, там же закрепите шкив и опоры. Смонтируйте коробку с электросхемами снизу рамы. Затем, на длинную часть коромысла закрепляете инструмент, а на короткую монтируете мотор. Соединяете мотор и вал с помощью ременной передачи, и ваше устройство готово.
Готовый вариант после соединения всех элементов
Чтобы полностью понимать всю последовательность действий, посмотрите видео, как сделать отрезной станок из болгарки своими руками:
Watch this video on YouTube
Статья по теме:
Инструкция по сборке самодельной дрели
Не знаете, как сделать дрель для сверления печатных плат? К Вашему вниманию инструкция с фото примерами по сборке простой мини дрели в домашних условиях!
Раз уж Вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени Вам захочется сделать какой-нибудь полезный электроприбор для дома, автомобиля либо дачи своими руками. Одновременно с этим самоделки могут пригодиться не только в быту, но и изготовлены на продажу, к примеру, самодельное зарядное устройство для аккумулятора. На самом деле процесс сборки простых устройств в домашних условиях не представляет ничего сложного. Нужно всего лишь уметь читать схемы и пользоваться инструментом для радиолюбителей.
Что касается первого момента, то перед тем, как приступать к изготовлению электронных самоделок своими руками, Вам нужно научиться читать электросхемы . В этом случае хорошим помощником будет наш краткий обзор всех условных обозначений на электрических схемах.
Из инструментов для начинающих электриков Вам пригодится паяльник, набор отверток, плоскогубцы и мультиметр . Для сборки некоторых популярных электроприборов может понадобиться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы рассказали даже, как сделать простой паяльник своими руками и тот же сварочный аппарат.
Отдельное внимание нужно уделить подручных материалам, из которых каждый электрик новичок сможет сделать элементарные электронные самоделки своими руками. Чаще всего в изготовлении простых и полезных электроприборов используются старые отечественные детали: трансформаторы, усилители, провода и т.д
В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче.
Напоследок хотелось бы отметить – если Вы знаете, как создать какой-нибудь интересный электроприбор своими руками, и желаете поделиться опытом, можете отправить собственную инструкцию нам на почту через форму Обратной связи. В свою очередь, мы обещаем сохранить авторство за Вами, чтобы остальные посетители знали, чья это электронная самоделка!
Типология схем
Электронные схемы и их составляющие могут быть разделены на два ключевых типа в зависимости от общих принципов их функционирования: аналоговые (непрерывные) и цифровые (дискретные). Одно и то же устройство может состоять как из схем одного типа, так и из смешения обоих типов в той или иной пропорции.
Аналоговые схемы
В основном аналоговые электронные приборы и устройства (радиоприёмники, например) конструктивно представляют собой сочетание нескольких разновидностей базовых схем. В аналоговых цепях используется непрерывный диапазон напряжения, в противоположность дискретным уровням, которые применяются в цифровых схемах. На данный момент разработано существенное количество разнообразных аналоговых контуров — в особенности их число велико в силу того, что под «схемой» можно понимать многое: от единственного компонента до целой системы, состоящей из тысяч элементов. Аналоговые схемы ещё называют иногда линейными (хотя необходимо заметить, что в некоторых их видах — преобразователях, к примеру, или модуляторах, — используются и многие нелинейные эффекты). В качестве характерных примеров аналоговых контуров можно назвать электронные лампы и транзисторные усилители, операционные усилители и осцилляторы.
В настоящее время сложно найти такую электронную схему, которая была бы полностью аналоговой. Сейчас в аналоговых цепях используются цифровые или даже микропроцессорные технологии, позволяющие увеличить их производительность. Такая схема обычно называется не аналоговой или цифровой, а смешанной. В некоторых случаях провести чёткое разграничение между непрерывными и дискретными схемами сложно — в силу того, что как те, так и другие включают в свой состав элементы и линейного, и нелинейного характера. Примером может послужить, допустим, компаратор: получая на входе непрерывный диапазон напряжения, он в то же время выдает на выходе лишь один из двух возможных уровней сигнала, подобно цифровой схеме. Похожим образом перегруженный транзисторный усилитель может приобрести свойства контролируемого переключателя, также имеющего два уровня выходного сигнала.
Цифровые схемы
К цифровым относятся схемы, основанные на некотором количестве дискретных уровней напряжения. Они представляют собой наиболее типичную физическую реализацию булевой алгебры и составляют элементную основу всех цифровых компьютеров. Термины «цифровая схема», «цифровая система» и «логическая схема» часто при этом рассматриваются как синонимичные. Для цифровых схем характерна, как правило, двоичная система с двумя уровнями напряжения, которые соответствуют логическому нулю и логической единице соответственно. Часто первый соотносится с низким напряжением, а вторая — с высоким, хотя встречаются и обратные варианты. Изучались также и тернарные логические схемы (то есть с тремя возможными состояниями), предпринимались попытки построения компьютеров на их основе. Помимо вычислительных машин, цифровые схемы составляют основу электронных часов и программируемых логических контроллеров (используемых для управления промышленными процессами); ещё одним примером могут служить цифровые сигнальные процессоры.
К числу базовых конструктивных элементов этого типа относятся:
Устройства с высокой степенью интеграции:
- Микропроцессоры
- Микроконтроллеры
- Интегральные схемы для специфического применения (ASIC)
- Цифровые сигнальные процессоры (DSP)
- Программируемые пользователем вентильные матрицы (FPGA)
Однонаправленный счетчик
Просмотров: 127 | Комментарии (0) Опубликованно: 23 июня 2011 — 15:23
Устройство предназначено для подсчета числа автомашин, заезжающих на стоянку (или уезжающих с нее), людей, входящих в помещение (или выходящих), предметов, перемещающихся на ленте конвейера, для использования в системах охранной сигнализации и т. п. Счетчик работает от двух датчиков (инфракрасных, световых, магнитных, контактных или иных), установленных так, чтобы каждый перемещающийся объект вызывал срабатывание сначала первого из них, а затем второго. Выходные замкнутые пары контактов датчиков, размыкающиеся при срабатывании, управляют счетчиком.
Датчик движения
Самоделки электронные призваны облегчать быт людей. Среди них — всевозможные датчики, которые позволяют управлять домом дистанционно. Одним из таких примеров является датчик движения.
Работают они на основе отражения импульсов. Если войти в контролируемую зону, импульс отразится, и его характеристики изменятся. Это зафиксирует детектор, который контролирует выходной сигнал.
Для дома лучше выбирать тепловой детектор, так как комплектующие у него более доступные. Схема сборки не вызывает сложностей (она указана на рисунке ниже). Да и работать такой прибор может в широком интервале температур. Подойдет данный датчик для контроля светильников, сигнализаций и так далее.
Прикольные человечки из радиодеталей
Ни что не мешает и Вам придумать что-то оригинальное свое. За рубежом подобное творчество носит название Sparebots.
Мы же начнем «кастинг» поделок из ненужных радиокомпонентов с фигурок людей. Рассмотрим наиболее удачные и выразительные.
Судя по количеству исполнителей это группа «Битлз». В любом случае такую поделку можно подарить другу гитаристу. Диски – негодные литиевые батарейки.
Будь Ваш друг баянистом или строителем – любого из них можно спаять. Голова баяниста – проволочный потециометр.
Как видите, нашелся подходящий образ и для штангиста и для балерины. Кусок старой печатной платы прекрасно работает в качестве подставки.
Эти молодые люди решили познакомиться. Туловище парня – герконовое реле.
Примерно вот так выглядят люди, которые нравятся друг другу. В этой поделке используется только три разновидности радиодеталей: микросхемы, резисторы и конденсаторы.
В итоге брачного союза появляются дети, которых воспитывают взрослые. Пусть светодиоды намекают на их «светлые головы».
Этот парень успешно сдал ЕГЭ и поступил в институт. Парня зовут Дима, а полное имя его кота – Маркус. Наверное, старый диод лучше всего подходит для имитации мордочки животного.
Столешница – «цельнотянутый» микропроцессор КР580ИК80А с системой команд INTEL8080A. Поделку паял автор материала сам, так что есть возможность оценить монтаж элементов по фото снизу.
Реле времени для дома
Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.
Самый простой способ создать задающий время элемент — это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:
- электролитический конденсатор большой емкости;
- транзистор типа p-n-p;
- электромагнитное реле;
- диод;
- переменный резистор;
- постоянные резисторы;
- источник постоянного тока.
Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле
Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать
Ориентироваться можно на КТ973А.
https://youtube.com/watch?v=nqdPBpoP5NY
Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.
Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.
Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.
https://youtube.com/watch?v=L72LUh2NeHE
Как спаять детские игрушки своими руками
Современные дети явно пресыщены многообразием игрушек, которые можно купить. В этой ситуации прикольные самоделки из старых радиодеталей способны поразить детское воображение своей необычностью.
Например, такую железную дорогу не купишь нигде! Конечно, придется попотеть, спаивая вместе мощные транзисторы. Взамен Вы получите восхищение и благодарность и своего ребенка и его друзей.
В данном случае придется потрудиться не меньше, собирая вместе десятки корпусов микросхем. Возможно, эта САУ понравится Глебу, который поступил в артиллерийское училище.
Кто-то мечтает стать танкистом, кто-то – летчиком. Можно начать с биплана и для его моделирования так же прекрасно подходят микросхемы.
Предпочитаете современный самолет? Не проблема! Только в этом случае придется повозиться, вырезая крылья из печатных плат.
Вертолет так же получился интересный: пусть транзисторы покрутятся в качестве винтов. Фишку с включенным светодиодом можно применить и в других поделках, надо лишь предусмотреть место и контакты для батарейки плюс микровыключатель.
Если не ошибаюсь, перед нами сюжет из фильма «Водный мир» и управляет лодкой Кевин Костнер. Возможно, получатель подарка решит по-другому.
Мотоциклов в сети – «широкий ассортимент». Данный экземпляр напоминает мой незабвенный ЧЗ-350.
Ах, Чебурашка! Вероятно, ему столько же лет, сколько и советским транзисторам, из которых изготовлена игрушка. Пусть наш Чебурашка понравится современным детям.
Схема мощного тиристорного регулятора напряжения
Cхемы электронных устройств
С помощью этого устройства можно регулировать напряжения от несколько десятков вольт до 220 В, при активной нагрузке.
Тринисторы VS1 и VS2 подключены параллельно между собой, на встречу друг к другу и последовательно к нагрузке. При включении тринисторы закрыты, через R5 происходит зарядка конденсаторов C1, C2. Конденсаторы C1, C2 и переменный резистор R5 образуют фазосдвигающую цепочку.
Динисторы VS3 и VS4 образуют импульсы, с помощью которых происходит управление тринисторами.
В тот момент когда конденсаторы зарядятся напряжением равным напряжению открытия динистора, произойдет скачок напряжения который включит тринистор и через нагрузку потечет ток. В начале отрицательного полупериода напряжения сети, происходит отключение данного тринистора и происходит новый цикл зарядки конденсаторов, но уже в обратной полярности. Происходит открытие другого тринистера и динистора.
Используемые детали
- R1, R2, R3, R4 — 51 Ом
- R5 — 270 кОм
- VS1 — КУ202Н
- VS2 — КУ202Н
- VS3 — КН102А
- VS4 — КН102Н
- C1 — 0,25 мкФ
- C2 — 0,25 мкФ
Установив VS1 и VS2 на радиаторы, можно увеличить нагрузку до 1,5 кВт.
Конденсаторы необходимо использовать рассчитанные на напряжение не менее 300 В.
В схеме можно использовать динисторы КН102Б но при этом нужно уменьшить емкость конденсаторов до 0,2 мкФ или КН102В — ёмкость уменьшить до 0,15 мкФ. Переменный резистор типа СП2-2-1
Дальше »
Основные различия аналоговой и цифровой электроники
Поскольку в аналоговых и цифровых схемах информация кодируется по-разному, у них отличаются и процессы обработки сигналов. Следует при этом заметить, что все операции, которые могут быть совершены над аналоговым сигналом (в частности, усиление, фильтрация, ограничение диапазона и т. п.) могут быть осуществлены и методами цифровой электроники и программного моделирования в микропроцессорах.
Основное различие аналоговой от цифровой электроники можно найти в наиболее характерных для той или иной электроники способах кодирования информации.
Аналоговая электроника использует простейшее пропорциональное одномерное кодирование — отражение физических параметров источника информации в аналогичные физические параметры электрического поля или напряжения (амплитуды в амплитуды, частоты в частоты, фазы в фазы и т. д.).
Цифровая электроника использует n-мерное кодирование физических параметров источника данных. Минимально в цифровой электронике используется двумерное кодирование: напряжение (ток) и моменты времени. Данная избыточность принята исключительно для гарантированной передачи данных с любым программируемым уровнем добавленных в устройстве шумов и искажений в исходный сигнал. В более сложных цифровых схемах используется методы программной микропроцессорной обработки информации. Методы цифровой передачи данных позволяют реально создавать физические каналы передачи данных абсолютно без потерь (без возрастания шумов и других искажений)
В физическом же смысле поведение всякой цифровой электронной схемы и всего устройства ничем не отличается от поведения аналогового электронного устройства или схемы и может быть описано теорией и правилами, описывающими функционирование аналоговых электронных устройств.
В соответствии со способом кодирования информации в аналоговых схемах они в существенно большей степени уязвимы к воздействию шума, нежели цифровые цепи. Малое изменение сигнала может внести значительные модификации в передаваемую информацию и в конечном счёте привести к её утрате; в свою очередь, цифровые сигналы принимают лишь одно из двух возможных значений, и для того, чтобы вызвать ошибку, помеха должна составлять примерно половину их общей величины. Это свойство цифровых схем может быть использовано для повышения устойчивости сигналов к помехам. Кроме того, противодействие шуму обеспечивается средствами восстановления сигналов на каждом логическом вентиле, которые уменьшают или ликвидируют помехи; такой механизм становится возможным благодаря квантованию цифровых сигналов . До тех пор, пока сигнал остаётся в пределах определённого диапазона значений, он ассоциируется с одной и той же информацией.
Шум является одним из ключевых факторов, влияющих на точность сигнала; в основном это шум, присутствующий в исходном сигнале, и помехи, вносимые при его передаче (см. Отношение сигнал-шум). Фундаментальные физические ограничения — к примеру, т. н. «дробовой» шум в компонентах — устанавливают пределы разрешения аналоговых сигналов. В цифровой электронике дополнительная точность обеспечивается использованием вспомогательных разрядов, характеризующих сигнал; их количество зависит от производительности аналого-цифрового преобразователя (АЦП) .
Сложность разработки
Аналоговые схемы сложнее разрабатывать, нежели сравнимые с ними цифровые; это одна из причин, по которым цифровые системы приобрели большее распространение, нежели аналоговые. Аналоговая схема разрабатывается вручную, и процесс её создания обеспечивает меньше возможностей для автоматизации. Следует, впрочем, заметить, что для взаимодействия с окружающей средой в той или иной форме цифровое электронное устройство нуждается в аналоговом интерфейсе . К примеру, у цифрового радиоприёмника имеется аналоговый предусилитель, который является первым звеном приёмной цепи.
Стационарная лампа
Для подсветки рабочего пространства за столом самоделки электронные предлагают много вариантов. Один из них предусматривает использование люминесцентной лампы и металлического профиля, который используется для крепления гипсокартонных листов.
Профиль имеет форму буквы «П» в разрезе. Благодаря этому он будет служить не только держателем, но и направлять (отражать) свет сверху вниз.
Профиль необходимо согнуть. Для этого две стороны надрезаются. После сгиба края соединяются саморезами, чтобы придать жесткость. Лампа имеет выключатель. Для него делаем отверстие в профиле. Далее лампа крепится к основанию. Усилить прочность профиля поможет прямоугольный его вариант. Для крепления к столу к одному краю профиля прикручиваем уголок из металла.
АППАРАТ ДЛЯ МАГНИТОТЕРМИИ
Ю.МЕДИНЕЦ (UB5UG), г.Киев.
Популярная в шестидесятых…восьмидесятых годах высокочастотная терапия (нагрев тканей тела в электромагнитном поле высокой частоты) сейчас практически «заглохла» — во-первых, из-за засилья рекламы лекарств, а во-вторых, из-за прекращения выпуска аппаратов ВЧ. Эти аппараты («Экран», УВЧ-30, УВЧ-80) выпускались с государственной дотацией, и в условиях рынка оказались коммерчески несостоятельными. Был у них и эксплуатационный недостаток — их индуктивные излучатели давали такой же электрический нагрев, как и емкостные.
Как известно, существует два вида идеальных излучателей — электрический и магнитный диполи. Первый представляет собой два проводника, к которым приложено напряжение, создающее электрическое поле. Второй — проводник с током, вокруг которого создается магнитное поле. Реальные излучатели очень близки к первому и весьма далеки от второго. Проводники имеют конечное сопротивление, на котором падает напряжение, создающее электрическое поле, сильно поглощаемое живыми тканями. Сопротивление электрических потерь ослабляет ток в проводнике и соответственно — магнитную составляющую поля. Поэтому получить магнитный нагрев (магнитотермию) можно только с низкоомными, высокодобротными и настроенными в резонанс с частотой генератора рамками-излучателями. Это условие не выполняется в перечисленных аппаратах ВЧ, поскольку в них применена многоконтурная схема, и в общем случае выходной контур (катушка) не настроен в резонанс с генератором — присутствие пациента и его движения расстраивают контур.
Между тем, магнитотермия имеет свои преимущества. Если при потенциальном электрическом поле в теле возникают линейные токи, от которых более всего греются кожа, жир, кости и мозг, имеющие большое сопротивление в последовательной цепи, то магнитное поле создает вихревые токи в физиологической жидкости вокруг частиц-изоляторов (например клеточных мембран). Максимально греется кровь и кровенаполненные ткани. Кроме того, магнитное поле не изменяет своей формы в теле и проникает в него, как в воздух. Воспаленные, отечные и опухолевые ткани греются в магнитном поле больше всего, чем достигается избирательное безопасное лечение. Перегрев здоровой ткани невозможен, т.к. организм регулирует температуру усилением кровотока, выносящего тепло. Открываются капилляры, большинство которых закрыто в спокойном состоянии. При этом лекарство, введенное в кровь, лучше орошает ткани и становится более эффективным (например антибиотики). Поэтому магнитотермия применяется как дополнительный усилитель лекарственной терапии.
Предлагаю аппарат для магнитотермии, рассчитанный на индивидуальное применение. Он прост, имеет малые габариты, но не приспособлен к непрерывной клинической работе (перегревается).
Схема аппарата приведена на рис. 1.