Линии напряженности
Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.
Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля. |
При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.
Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.
Кратные единицы измерения напряжения
Реальные значения измеряемых напряжений могут быть в десятки тысяч раз как больше, так и меньше одного вольта. Поэтому для удобства записи (фиксации) дополнительно были введены следующие кратные и дольные единицы:
- 1 нановольт — 1 нВ=10-9В;
- 1 микровольт — 1 мкВ=10-6В;
- 1 милливольт — 1 мВ=10-3В;
- 1 киловольт — 1 кВ=103В;
- 1 мегавольт — 1 МВ=106В.
Необходимо помнить, что высокое напряжение представляет большую опасность для здоровья человека. Безопасным значением для человеческого организма считается напряжение 42 В в нормальных условиях и 12 В в условиях с повышенной опасностью (влажность, металлические полы, большая температура).
Джоуль для измерения физических величин
Труды Джоуля позволили сформировать закон сохранения энергии. Отвечая на вопрос, что измеряется в джоулях, можно определить этой единицей количество работы, которая совершается в процессе перемещения точки приложения силы в количестве одного ньютона на расстояние в один метр в направлении действия приложенной силы. В теории электричества понятие джоуля эквивалентно работе, совершаемой силами электрического поля в течение 1 секунды с напряжением в 1 вольт, для того чтобы поддержать силу тока в 1 ампер.
Энергия по своей сути является физической величиной, отображающей переход материи из одного состояния в другое. Замкнутая физическая система позволяет сохранять энергию ровно столько времени, пока сама система находится в замкнутом состоянии. Это положение представляет собой закон сохранения энергии.
Энергия представлена различными видами. Кинетическая энергия связана со скоростью, которой обладают точки, движущиеся в механической системе. Для потенциальной энергии характерно создание определенных энергетических запасов, позволяющих в дальнейшем получить кинетическую энергию. Эти категории попадают под возможность их измерения в джоулях. Кроме того, существует энергия, связанная с внутренней энергией молекулярных связей. Широко известна ядерная и гравитационная энергия, а также энергия электрического поля.
В процессе механической работы один вид энергии превращается в другой. Данная физическая категория тесно связана с величиной и направлением силы, воздействующей на тело, а также с пространственным перемещением этого тела.
Важнейшим понятием классической термодинамики, измеряемым в джоулях, является теплота. В соответствии с ее первым началом, количество теплоты, получаемое системой, расходуется при совершении работы, которая требуется для противодействия внешним силам. Одновременно в процессе работы изменяется внутренняя энергия. Таким образом, для теплообмена, изменяющего внутреннюю энергию, обязательно совершение механической работы, измеряемой в джоулях.
Математические операции
Q-числа представляют собой отношение двух целых чисел: числитель хранится в памяти, знаменатель равен 2 n .
d{\ displaystyle d}
Рассмотрим следующий пример:
- Знаменатель Q8 равен 2 8 = 256.
- 1,5 равно 384/256
- 384 сохраняется, 256 выводится, потому что это число Q8.
Если основание числа Q должно поддерживаться ( n остается постоянным), математические операции числа Q должны сохранять знаменатель постоянным. Следующие формулы показывают математические операции с общими числами Q и .
d{\ displaystyle d}N1{\ displaystyle N_ {1}}N2{\ displaystyle N_ {2}}
N1d+N2dзнак равноN1+N2dN1d-N2dзнак равноN1-N2d(N1d×N2d)×dзнак равноN1×N2d(N1dN2d)dзнак равноN1N2d{\ displaystyle {\ begin {align} {\ frac {N_ {1}} {d}} + {\ frac {N_ {2}} {d}} & = {\ frac {N_ {1} + N_ {2) }} {d}} \\ {\ frac {N_ {1}} {d}} — {\ frac {N_ {2}} {d}} & = {\ frac {N_ {1} -N_ {2} } {d}} \\\ left ({\ frac {N_ {1}} {d}} \ times {\ frac {N_ {2}} {d}} \ right) \ times d & = {\ frac {N_ {1} \ times N_ {2}} {d}} \\\ left ({\ frac {N_ {1}} {d}} / {\ frac {N_ {2}} {d}} \ right) / d & = {\ frac {N_ {1} / N_ {2}} {d}} \ end {align}}}
Поскольку знаменатель является степенью двойки, умножение может быть реализовано как арифметический сдвиг влево, а деление как арифметический сдвиг вправо; на многих процессорах сдвиги быстрее, чем умножение и деление.
Чтобы поддерживать точность, промежуточные результаты умножения и деления должны иметь двойную точность, и следует соблюдать осторожность при округлении промежуточного результата перед преобразованием обратно в желаемое число Q.
Используя C, выполняются следующие операции (обратите внимание, что здесь Q означает количество битов дробной части):
Добавление
int16_t q_add(int16_t a, int16_t b) { return a + b; }
С насыщенностью
int16_t q_add_sat(int16_t a, int16_t b) { int16_t result; int32_t tmp; tmp = (int32_t)a + (int32_t)b; if (tmp > 0x7FFF) tmp = 0x7FFF; if (tmp < -1 * 0x8000) tmp = -1 * 0x8000; result = (int16_t)tmp; return result; }
В отличие от чисел с плавающей запятой ± Inf, насыщенные результаты не являются липкими и будут ненасыщенными при добавлении отрицательного значения к положительному значению насыщения (0x7FFF) и наоборот в показанной реализации. В ассемблере можно использовать флаг подписанного переполнения, чтобы избежать приведения типов, необходимых для этой реализации C.
Умножение
// precomputed value: #define K (1 << (Q - 1)) // saturate to range of int16_t int16_t sat16(int32_t x) { if (x > 0x7FFF) return 0x7FFF; else if (x < -0x8000) return -0x8000; else return (int16_t)x; } int16_t q_mul(int16_t a, int16_t b) { int16_t result; int32_t temp; temp = (int32_t)a * (int32_t)b; // result type is operand's type // Rounding; mid values are rounded up temp += K; // Correct by dividing by base and saturate result result = sat16(temp >> Q); return result; }
Разделение
int16_t q_div(int16_t a, int16_t b) { /* pre-multiply by the base (Upscale to Q16 so that the result will be in Q8 format) */ int32_t temp = (int32_t)a << Q; /* Rounding: mid values are rounded up (down for negative values). */ /* OR compare most significant bits i.e. if (((temp >> 31) & 1) == ((b >> 15) & 1)) */ if ((temp >= && b >= ) || (temp < && b < )) { temp += b 2; /* OR shift 1 bit i.e. temp += (b >> 1); */ } else { temp -= b 2; /* OR shift 1 bit i.e. temp -= (b >> 1); */ } return (int16_t)(temp b); }
Обозначение резьбы на чертеже
При более жестких тре-
бованиях в отсчеты по рулетке вводят поправку за компарирование и применяют соответствую-
щую методику наблюдений на станции или более высокоточные инструменты.
Нивелирование дна и откоса котлована.
Перед зачисткой дна котлована на всей его пло-щади разбивают сетку, которая обычно образуется от пересечения продольных и поперечных осей. В вершинах сетки забивают колья с таким расчетом, чтобы верхний срез их был как можно
ближе к проектной отметке дна котлована. Затем нивелированием определяют проектные отметки торцов кольев. Между этими опорными точками забивают дополнительные колья через 3 – 5 м и
с помощью трех визирок получают проектные отметки дна котлована. При этом две постоянные
визирки устанавливают на опорные точки, а третью – ходовую – ставят на кол между постоянны-ми визирками. Ударяя по торцу кола, где установлена ходовая визирка, добиваются того, чтобы верх трех визирок находился на одной прямой.
Работы по зачистке котлована завершаются исполнительной съемкой и составлением испол-
нительной схемы, на которой показывают фактические и проектные отметки дна котлована (рис.9).
рис.9. Исполнительная схема котлована
При зачистке откоса котлована применяют откосный прямоугольный треугольник (рис. 10 ,а),
Откосное лекало (рис. 10, б) или направляющую доску (рис. 10,в).
Рис.10. Устройства для зачистки откосов котлована
12
Дата добавления: 2015-12-22; ;
Направление силы Кулона и векторный вид формулы
Для полного понимания формулы закон Кулона можно изобразить наглядно:
F1,2 — сила взаимодействия первого заряда по отношению ко второму.
F2,1 — сила взаимодействия второго заряда по отношению к первому.
Также при решении задач электростатики необходимо учитывать важное правило: одноимённые электрические заряды отталкиваются, а разноимённые притягиваются. От этого зависит расположение сил взаимодействия на рисунке
Если рассматриваются разноимённые заряды, то силы их взаимодействия будут направлены навстречу друг другу, изображая их притягивание.
Формула основного закона электростатики в векторном виде можно представить следующим образом:
— сила, действующая на точечный заряд q1, со стороны заряда q2,
— радиус-вектор, соединяющий заряд q2 с зарядом q1,
Сравнительная таблица
Сравнительный график переменного тока и постоянного тока
Переменный ток | Постоянный ток | |
Количество энергии, которое можно нести | Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. | Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию. |
Причина направления потока электронов | Вращающийся магнит вдоль провода. | Устойчивый магнетизм вдоль провода. |
частота | Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. | Частота постоянного тока равна нулю. |
направление | Он меняет свое направление, пока течет по кругу. | Он течет в одном направлении в цепи. |
ток | Это величина, изменяющаяся во времени | Это ток постоянной величины. |
Поток электронов | Электроны продолжают переключать направления – вперед и назад. | Электроны неуклонно движутся в одном направлении или «вперед». |
Получен из | Генератор переменного тока и сеть. | Ячейка или батарея. |
Пассивные параметры | Сопротивление. | Только сопротивление |
Фактор силы | Лежит между 0 и 1. | это всегда 1. |
Типы | Синусоидальный, Трапециевидный, Треугольный, Квадратный. | Чистый и пульсирующий. |
Постоянный ток
Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.
От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.
Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.
Переменный ток
Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».
Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.
Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.
При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.
В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.
Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.
Крутильные весы Шарля Кулона
Это прибор, разработанный Кулоном в 1777 году, помог вывести зависимость силы, названной в последствии в его честь. С его помощью изучается взаимодействие точечных зарядов, а также магнитных полюсов.
Крутильные весы имеют небольшую шёлковую нить, расположенную в вертикальной плоскости, на которой висит уравновешенный рычаг. На концах рычага расположены точечные заряды.
Под действием внешних сил рычаг начинает совершать движения по горизонтали. Рычаг будет перемещаться в плоскости до тех пор, пока его не уравновесит сила упругости нити.
В процессе перемещений рычаг отклоняется от вертикальной оси на определённый угол. Его принимают за d и называют углом поворота. Зная величину данного параметра, можно найти крутящий момент возникающих сил.
Крутильные весы Шарля Кулона выглядят следующим образом:
Коэффициент пропорциональности k и электрическая постоянная
В формуле закона Кулона есть параметры k — коэффициент пропорциональности или — электрическая постоянная. Электрическая постоянная представлена во многих справочниках, учебниках, интернете, и её не нужно считать! Коэффициент пропорциональности в вакууме на основе можно найти по известной формуле:
Здесь — электрическая постоянная,
— число пи,
— коэффициент пропорциональности в вакууме.
Чтобы подытожить вышесказанное, необходимо привести официальную формулировку главного закона электростатики. Она принимает вид:
Сила взаимодействия двух покоящихся точечных зарядов в вакууме прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Причём произведение зарядов необходимо брать по модулю!
В данной формуле q1 и q2 — это точечные заряды, рассматриваемые тела; r2 — расстояние на плоскости между этими телами, взятое в квадрате; k — коэффициент пропорциональности ( для вакуума).
Буквенное обозначение радиоэлементов в схеме
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:
А – это различные устройства (например, усилители)
В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.
С – конденсаторы
D – схемы интегральные и различные модули
E – разные элементы, которые не попадают ни в одну группу
F – разрядники, предохранители, защитные устройства
G – генераторы, источники питания,
H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
K – реле и пускатели
L – катушки индуктивности и дроссели
M – двигатели
Р – приборы и измерительное оборудование
Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока
R – резисторы
S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения
T – трансформаторы и автотрансформаторы
U – преобразователи электрических величин в электрические, устройства связи
V – полупроводниковые приборы
W – линии и элементы сверхвысокой частоты, антенны
X – контактные соединения
Y – механические устройства с электромагнитным приводом
Z – оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:
BD – детектор ионизирующих излучений
BE – сельсин-приемник
BL – фотоэлемент
BQ – пьезоэлемент
BR – датчик частоты вращения
BS – звукосниматель
BV – датчик скорости
BA – громкоговоритель
BB – магнитострикционный элемент
BK – тепловой датчик
BM – микрофон
BP – датчик давления
BC – сельсин датчик
DA – схема интегральная аналоговая
DD – схема интегральная цифровая, логический элемент
DS – устройство хранения информации
DT – устройство задержки
EL – лампа осветительная
EK – нагревательный элемент
FA – элемент защиты по току мгновенного действия
FP – элемент защиты по току инерционнго действия
FU – плавкий предохранитель
FV – элемент защиты по напряжению
GB – батарея
HG – символьный индикатор
HL – прибор световой сигнализации
HA – прибор звуковой сигнализации
KV – реле напряжения
KA – реле токовое
KK – реле электротепловое
KM – магнитный пускатель
KT – реле времени
PC – счетчик импульсов
PF – частотомер
PI – счетчик активной энергии
PR – омметр
PS – регистрирующий прибор
PV – вольтметр
PW – ваттметр
PA – амперметр
PK – счетчик реактивной энергии
PT – часы
QF – выключатель автоматический
QS – разъединитель
RK – терморезистор
RP – потенциометр
RS – шунт измерительный
RU – варистор
SA – выключатель или переключатель
SB – выключатель кнопочный
SF – выключатель автоматический
SK – выключатели, срабатывающие от температуры
SL – выключатели, срабатывающие от уровня
SP – выключатели, срабатывающие от давления
SQ – выключатели, срабатывающие от положения
SR – выключатели, срабатывающие от частоты вращения
TV – трансформатор напряжения
TA – трансформатор тока
UB – модулятор
UI – дискриминатор
UR – демодулятор
UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель
VD – диод, стабилитрон
VL – прибор электровакуумный
VS – тиристор
VT – транзистор
WA – антенна
WT – фазовращатель
WU – аттенюатор
XA – токосъемник, скользящий контакт
XP – штырь
XS – гнездо
XT – разборное соединение
XW – высокочастотный соединитель
YA – электромагнит
YB – тормоз с электромагнитным приводом
YC – муфта с электромагнитным приводом
YH – электромагнитная плита
ZQ – кварцевый фильтр
Определение
Версия Texas Instruments
Обозначение Q, как определено Texas Instruments, состоит из буквы, за которой следует пара чисел m n , где m — количество битов, используемых для целой части значения, а n — количество дробных битов.
По умолчанию, запись описывает подписанный формат двоичного неподвижной точки, с немасштабированным целым числом хранится в дополнительном двоичном формате, используемая в большинстве бинарных процессоров. Первый бит всегда указывает знак значения (1 = отрицательное, 0 = неотрицательное) и не учитывается в параметре m . Таким образом, общее количество w используемых битов равно 1 + m + n .
Например, спецификация описывает знаковое двоичное число с фиксированной запятой, всего w = 16 бит, включая знаковый бит, три бита для целой части и 12 битов, которые считаются дробными. То есть 16-битовое целое число со знаком (дополнение до двух), которое неявно умножается на коэффициент масштабирования 2-12.
В частности, когда n равно нулю, числа — это просто целые числа -. Если m равно нулю, все биты, кроме бит знака, являются дробными битами; тогда диапазон сохраненного числа составляет от -1,0 (включительно) до +1 (исключая). И m, и n могут быть отрицательными
Буква m и точка могут быть опущены, и в этом случае они выводятся из размера переменной или регистра, в котором хранится значение. Это означает целое число со знаком с любым количеством битов, которое неявно умножается на 2-12 .
Буква может иметь префикс для обозначения беззнакового двоичного формата с фиксированной точкой. Например, описывает значения, представленные как 16-разрядные целые числа без знака с неявным масштабным коэффициентом 2-15 , которые находятся в диапазоне от 0,0 до (2 16 -1) / 2 15 = +1,999969482421875.
Версия AMD
Вариант обозначения Q использовался AMD . В этом варианте число m включает бит знака. Например, 16-битное целое число со знаком будет обозначено в варианте TI, но в варианте AMD.
Определение слова «Джоуль» по БСЭ:
Джоуль — Джоуль (Joule) Джеймс Прескотт (24.12.1818, Солфорд, Ланкашир, — 11.10.1889, Сейл, Чешир), английский физик, член Лондонского королевского общества (1850). Был владельцем пивоваренного завода близ Манчестера. Внёс значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения энергии. Д. установил (1841. опубликовано в 1843), что количество тепла, выделяющееся в металлическом проводнике при прохождении через него электрического тока, пропорционально электрическому сопротивлению проводника и квадрату силы тока (см. Джоуля — Ленца закон). В 1843-50 Д. экспериментально показал, что теплота может быть получена за счёт механической работы, и определил механический эквивалент теплоты, дав тем самым одно из экспериментальных обоснований закона сохранения энергии. В 1851, рассматривая теплоту как движение частиц, теоретически определил теплоёмкость некоторых газов. Совместно с У. Томсоном опытным путём установил, что при медленном стационарном адиабатическом протекании газа через пористую перегородку температура его изменяется (см. Джоуля — Томсона эффект). Обнаружил явление магнитного насыщения при намагничивании ферромагнетиков. Соч.: The scientific papers, v. 1-2, L., 1884-87. в рус. пер. — Некоторые замечания о теплоте и о строении упругих жидкостей, в кн.: Основатели кинетической теории материи, М. — Л., 1937. Лит.: Wood A., Joule and the study of energy, L., 1925. Дж. П. Джоуль.
Джоуль — единица энергии и работы в Международной системе единиц и МКСА системе единиц, равная работе силы 1 н при перемещении ею тела на расстояние 1 м в направлении действия силы. Названа в честь английского физика Дж. Джоуля. Обозначения: русское дж, международное J. Д. был введён на Втором международном конгрессе электриков (1889) в Абсолютные практические электрические единицы в качестве единицы работы и энергии электрического тока. Д. был определён как работа, совершаемая при мощности в 1 вт в течение 1 сек. Международная конференция по электрическим единицам и эталонам (Лондон, 1908) установила «международные» электрические единицы, в том числе так называемый международный Д. После возвращения с 1 января 1948 к абсолютным электрическим единицам было принято соотношение: 1 международный Д. = 1,00020 абсолютный Д. Д. применяется также как единица количества теплоты. Соотношения Д. с др. единицами: 1 дж = 107 эрг = 0,2388 кал. Г. Д. Бурдун.
Таблица единиц измерения «Тепловые явления»
Физическая величина |
Символ |
Единица измерения физической величины |
Ед. изм. физ. вел. |
Описание |
Примечания |
Температура |
T |
К |
Средняя кинетическая энергия частиц объекта. |
Интенсивная величина |
|
Температурный коэффициент |
α |
кельвин в минус первой степени |
К-1 |
Зависимость электрического сопротивления от температуры |
|
Температурный градиент |
gradT |
кельвин на метр |
К/м |
Изменение температуры на единицу длины в направлении распространения теплоты. |
|
Теплота (количество теплоты) |
Q |
джоуль |
Дж = (кг·м2/с2) |
Энергия, передаваемая от одного тела к другому немеханическим путём |
|
Удельная теплота |
q |
джоуль на килограмм |
Дж/кг |
Кол-во теплоты, которое необходимо подвести к веществу, взятому при температуре плавления, чтобы расплавить его. |
|
Теплоемкость |
C |
джоуль на кельвин |
Дж/К |
Кол-во теплоты, поглощаемой (выделяемой) телом в процессе нагревания. |
|
Удельная теплоемкость |
c |
джоуль на килограмм-кельвин |
Дж/(кг•К) |
Теплоёмкость единичной массы вещества. |
|
Энтропия |
S |
джоуль на килограмм |
Дж/кг |
Мера необратимого рассеивания энергии или бесполезности энергии. |
Буквенный суффикс в маркировке процессоров Intel Core для настольных компьютеров
Буквенный суффикс | Описание | Пример |
K | Возможность разгона процессора (увеличение тактовой частоты процессора). | Intel Core i9-9900K
Intel Core i7-4770K Intel Core i7-3370K Intel Core i5-3570K Intel Core i7-2600K Intel Core i5-2500K |
F | Процессор без встроенной графики. Для работы необходима дискретная видеокарта. | Intel Core i9-9900KF
Intel Core i5-9400F |
Т | Процессор со сниженным потреблением энергии и тепловыделением. | Intel Core i7-6700T
Intel Core i5-6600T Intel Core i3-6300T Intel Core i7-4770T Intel Core i7-3770T Intel Core i5-3570T Intel Core i5-2500T Intel Core i5-2390T |
C | Процессор с высокопроизводительной встроенной графикой и возможностью разгона. | Intel Core i7-5775C
Intel Core i7-5675C |
R | Процессор с высокопроизводительной встроенной графикой в корпусе BGA1364 (для мобильных устройств). | Intel Core i7-5775R
Intel Core i5-5675R Intel Core i7-5575R Intel Core i7-4770R |
S | Процессоры с оптимизированной производительностью. | Intel Core i7-4770S
Intel Core i7-3770S Intel Core i5-3550S Intel Core i5-2500S Intel Core i5-2400S |
Сокращённые наименования мер
Сокращённые наименования мер принято записывать без точки:
Меры длины
|
Меры веса/массы
|
Меры площади (квадратные меры)
|
Меры объёма (кубические меры)
|
Меры времени
|
Мера вместимости сосудов
литр — л |
1 мм | 1 см | 1 дм | 1 м | 1 км |
1 мм2 | 1 см2 | 1 дм2 | 1 м2 | 1 км2 |
1 мм3 | 1 см3 | 1 дм3 | 1 м3 | 1 км3 |
Таблица единиц измерения «Тепловые явления»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Температура | T | кельвин | К | Средняя кинетическая энергия частиц объекта. | Интенсивная величина |
Температурный коэффициент | α | кельвин в минус первой степени | К-1 | Зависимость электрического сопротивления от температуры | |
Температурный градиент | gradT | кельвин на метр | К/м | Изменение температуры на единицу длины в направлении распространения теплоты. | |
Теплота (количество теплоты) | Q | джоуль | Дж = (кг·м2/с2) | Энергия, передаваемая от одного тела к другому немеханическим путём | |
Удельная теплота | q | джоуль на килограмм | Дж/кг | Кол-во теплоты, которое необходимо подвести к веществу, взятому при температуре плавления, чтобы расплавить его. | |
Теплоемкость | C | джоуль на кельвин | Дж/К | Кол-во теплоты, поглощаемой (выделяемой) телом в процессе нагревания. | |
Удельная теплоемкость | c | джоуль на килограмм-кельвин | Дж/(кг•К) | Теплоёмкость единичной массы вещества. | |
Энтропия | S | джоуль на килограмм | Дж/кг | Мера необратимого рассеивания энергии или бесполезности энергии. |
Кинематика
Путь при равномерном движении:
Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):
Средняя скорость пути:
Средняя скорость перемещения:
Определение ускорения при равноускоренном движении:
Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:
Средняя скорость при равноускоренном движении:
Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:
Координата при равноускоренном движении изменяется по закону:
Проекция скорости при равноускоренном движении изменяется по такому закону:
Скорость, с которой упадет тело падающее с высоты h без начальной скорости:
Время падения тела с высоты h без начальной скорости:
Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):
Формула для тормозного пути тела:
Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:
Дальность полета тела при горизонтальном броске с высоты H:
Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:
Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):
Время подъема до максимальной высоты при броске под углом к горизонту:
Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):
Определение периода вращения при равномерном движении по окружности:
Определение частоты вращения при равномерном движении по окружности:
Связь периода и частоты:
Линейная скорость при равномерном движении по окружности может быть найдена по формулам:
Угловая скорость вращения при равномерном движении по окружности:
Связь линейной и скорости и угловой скорости выражается формулой:
Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):
Центростремительное ускорение находится по одной из формул: