Зависимость сопротивления и температуры
Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой
R(T) = A exp(b/T)
где A, b – постоянные, зависящие от свойств материала и геометрических размеров.
Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта
Будет интересно Как прочитать обозначение (маркировку) резисторов
1/T = a+b(lnR)+c(lnR)3
где T – температура в К;
R – сопротивление в Ом;
a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.
Стеклянный термистор.
Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:
- a = 1,03 10-3
- b = 2,93 10-4
- c = 1,57 10-7
Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.
Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.
В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:
1/T = a+b(lnR)+c(lnR)2 + d(lnR)3
Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.
Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток
При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК)
Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:
- Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
- Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).
Терморезисторы часто разделят по диапазонам рабочих температур:
- Низкотемпературные (ниже 170 К);
- Среднетемпературные (170-510 К);
- Высокотемпературные (свыше 510 К).
Обозначение термистора указано на рисунке ниже.
Устройство термистора.
https://youtube.com/watch?v=rV-mjLHDMBg
https://youtube.com/watch?v=pbi56xGUsaE
PTC
В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.
Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.
Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.
Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.
Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.
Главные направления применения:
- Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
- Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
- Нагревательный узел в пистолетах для приклеивания.
- В машинах для нагрева тракта впуска.
- Размагничивание ЭЛТ-кинескопов и т. д.
Температурные детекторы NTC и PTC
Есть два типа термисторов: отличается направление зависимости R от температуры, механизм ТКС. Слово перед сокращением фразы «Temperature Coefficient» отображает данный нюанс:
- Negative. NTC, рассматриваемые нами. С отрицательным t° коэфф. С ростом температуры падает сопр.;
- Positive, PTC. Второе название позисторы. С положительным t° коэфф. R увеличивается.
Для NTC терморезисторов используют смеси многокристаллических оксидов переходных металлов (MnO, СoOx, NiO и CuO), полупроводников определенных типов (A, B), и стеклоподобных (Ge и Si). А PTC (позисторы) состоят из твердых веществ, основанных на BaTiO₃, данный сплав имеет именно позитивную реакцию (ТКС). Но отличия в работе в основном лишь в направлении зависимости R/T.
Наиболее популярные температурные детекторы NTC среднего диапазона: ТКС −2.4…-8.4 %/К, с широкими границами сопр. (1…106 Ом). Если говорить о PTC, то эти цифры 0.5…0.7 %/К, часто они из кремния, их сопротивление, в отличие от NTC, приближается к линейному.
PTC используются на оборудовании охлаждения, температурной стабилизации в радиоэлектронных схемах, как саморегулирующиеся нагревательные детали. Их R увеличивается по мере роста их же нагрева (PTC нагреватели), такая запчасть никогда не перегреется, всегда выдает устойчивые тепломощности при значительном диапазоне напряжений.
Сферы чрезвычайно схожие, а принцип в основе аналогичный — все зависит от того, что требуется, негативный или положительный ТКС:
- NTC следит за понижением температуры;
- PTC — за повышением.
Для температурной зависимости сопротивления позисторов характерен резкий, на несколько порядков, скачок сопротивления, при этом температуру скачкообразного изменения сопротивления можно изменять от значений ниже 0 °С до 240 °С.
Терморезисторы с положительным ТКС (позисторы)
Предохранители в системах защиты по току и напряжению |
|||||||
Тип |
Номинальное сопротивление, Ом |
Тпер.,°С |
Температурный коэффициент сопротивления,не менее, %/°С(в интервале температур) |
Кратность изменения сопротивления,не менее(в интервале температур) |
Максимальное напряжение, В |
Ток опрокидывания, мА |
Номинальный ток, мА |
270…1500 |
60±10 |
12 (70…90°С) |
102 (25…100°С) |
300 |
10…30 |
5…15 |
|
10…1500 |
120±10 |
12; 13 (130…150°С) |
102; 103 (25…100°С) |
60…300 |
26…300 |
15…180 |
|
180; 270 |
– |
15 |
103 (25…100°С) |
– |
– |
– |
|
100 … 400 |
– |
15 |
103 (25…100°С) |
– |
– |
– |
Нагревательные элементы | ||||||
Тип | Номинальноесопротивление,Ом | Тпер, °С | Температурный коэффициентсопротивления,не менее, %/°С(в интервале температур) | Предельноенапряжение,В | Кратность изменения сопротивления, не менее(в интервале температур) | Максимальныйпусковой ток,мА |
ТРП-24 | 100…400 | – | 10 (70…100°С) | 35 | 102 (25…100°С) | – |
ТРП-24М | 300…600 | – | 10 (25…50°С) | 35 | 3 (5…25°С);10 (25…50°С); 102 (25…90°С) | – |
15 000…30 000 | 3 (5…25°С);10 (25…50°С) | |||||
ТРП-29 | 180±25%;820±25% | 120±10 | 15 (130…150°С) | 34; 115 | 102 (25…140°С) | 300 |
Датчики в системах тепловой защиты электрических машин | |||||||
Тип | Номинальноесопротивление,Ом | Классификационная температура, Ткл, °С | Сопротивление, Ом при температуре | Рабочеенапряжение,не более,В | Постоянная времени,не более,с | ||
(Ткл — 5)°С | (Ткл + 5)°С | (Ткл + 15)°С | |||||
ТРП-10 | 50 …150 | 90; 100; 110; 120; 130; 140; 150; 160 | <550 | >1330 | >4000 | 7,5 | 8 |
Области применения:
-
позисторы, работающие при мощности вызывающей разогрев позистора:
- предохранители в схемах защиты от перегрузок по току и напряжению с температурой переключения 60…120°С и рабочим напряжением до 300 В (ТРП-19, ТРП-27);
- высоконадежные и долговечные нагревательные элементы с автоматической стабилизацией температуры (ТРП-14, -16, -17, -18, -21, -24);
- переключатели в схемах пусковых устройств, в схемах размагничивания, в схемах задержки (ТРП-18);
2. позисторы, работающие при мощности не вызывающей разогрева позистора:
- элементы встроенной температурной защиты с интервалом рабочих температур 90…160°С (ТРП-10);
- термодатчики в схемах измерения и контроля температуры (ТРП-10, ТРП-24М).
АО «НИИ «Гириконд» разрабатывает и производит терморезисторы в различном конструктивном исполнении, ведутся разработки терморезисторов в чип исполнении.
Основные параметры и характеристики
|
||
|
||
|
Виды по типу нагрева
Нагрев может быть таких типов (ему соответствует 2 типа термических резисторов):
- прямой. Температура самого элемента меняется под воздействием тока на нем или воздуха окружающей среды (климатические условия, среда помещения, прибора);
- косвенный. Температура повышается из-за элементов, окружающих датчик, находящихся непосредственного близко около него. При этом детали никак не связаны. Сопротивление полупроводника обусловлено трансформациями, модуляциями мощности, иных характеристик тока на ближайших элементах. Изделия с косвенным принципом применяются, например, в комбинированных мультиметрах.
Общий принцип действия
Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.
В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.
При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.
Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали. Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре
Такие компоненты способны реагировать на малейшее изменение в температуре
Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.
Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.
При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.
Советуем изучить — Схема АПВ однократного действия на воздушных и кабельных ЛЭП 6 — 10 кВ
После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.
В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.
Преимущества позисторов перед другими нагревательными элементами:
- Саморегулирование и энергоэффективность.
- Отсутствие компонентов, увеличивающих вероятность перебоев в работе, таких как термостаты и др., значительно увеличивают степень надёжности PTC нагревателей.
- Возможно изготовление устройства на напряжение от 12 В до 240 В, по запросу клиента – до 800 В.
- Опционально – изготовление камней с температурой Кюри от 40°C до 280°C.
- Компактный и простой дизайн.
- Высокая удельная мощность.
- Длительный срок службы – не менее 20000 часов непрерывной работы.
- Возможность использования в условиях при повышенных требованиях к пожаро- и взрывозащищённости.
- Конфигурирование (сборка) элементов любой формы в соответствии с требованиями заказчика.
Как определить номинал по цветовым кольцам
В последнее время выводные сопротивления чаще обозначаются с помощью цветовых полос и это относится как к отечественным, так и к зарубежным элементам. В зависимости от количества цветовых полос меняется способ их расшифровки. В общем виде он собран в ГОСТ 175-72.
Цветовая маркировка резисторов может выглядеть в виде 3, 4, 5 и 6 цветовых колец. При этом кольца могут быть смещены к одному из выводов. Тогда кольцо, которое ближе всех к проволочному выводу, считают первым и расшифровку цветного кода начинают с него. Или одно из колец может отсутствовать, обычно предпоследнее. Тогда первое это то, возле которого есть пара.
Другой вариант, когда маркировочные кольца расположены равномерно, т.е. заполняют поверхность равномерно. Тогда первое кольца определяют по цветам. Допустим, одно из крайних колец (первое) не может быть золотого цвета, тогда можно определить с какой стороны идет отчет.
Обратите внимание при таком способе маркировки из 4-х колец третье кольцо – это множитель. Как разобраться в этой таблице? Возьмем верхний резистор первое кольцо красного цвета, это 2, второе фиолетового – это 7, третье, множитель красное – это 100, а допуск у нас коричневый – это 1%. Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны
Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны.
Второй резистор имеет цветовую маркировку из 5 полос. У нас: 2, 7, 2, 100, 1%, тогда: 272*100=27200 Ом или 27,2 кОм с допуском в 1%.
У резисторов из 3 полос цветовая маркировка производится по такой логике:
- 1 полоса – единицы;
- 2 полоса – сотни;
- 3 полоса – множитель.
Точность таких компонентов равна 20%.
Расшифровать цветовое обозначение вам поможет программа ElectroDroid, она доступна для Android в Play Market, в её бесплатной версии есть данная функция.
Другой способ расшифровки цветового кода от компании Philips предполагает использование 4, 5 и 6 полос. Тогда последняя полоса несет информацию о температурном коэффициенте сопротивления (насколько изменяется сопротивление при изменении температуры).
Чтобы определить номинал воспользуйтесь таблицей
Обратите внимание на последнюю колонку – это ТКС
На корпусе цветные кольца распределяются, так как показано на этой схеме:
Более подробно узнать о том, как расшифровать маркировку резисторов, вы можете из данных видео:
https://youtube.com/watch?v=O-Fsg11ZlXM
https://youtube.com/watch?v=3qPMqKeH80c
Известные PTC-файлы
Доминантный тип файла PTC
.PTC
Формат файла: | .ptc |
Категория: | Abbyy Finereader File |
Формат файла PTC используется Abbyy FineReader, умный и простой в использовании OCR (Optical Character Recognition) и преобразования программного обеспечения PDF.
Создатель: | ABBYY |
Группа: | Необычные файлы |
Ключ реестра: | HKEY_CLASSES_ROOT\.ptc |
Программные обеспечения, открывающие Abbyy Finereader File:
ABBYY FineReader, разработчик — ABBYY
Windows |
Mac |
Больше PTC-файлов
.PTC
Формат файла: | .ptc |
Категория: | PFXplus Compiled Program |
Составитель программа, созданная PFXplus, набор инструментов, используемых для решения проблем разработки приложений.
Создатель: | Powerflex Corporation |
Группа: | Файлы данных |
Программы, открывающие файлы PFXplus Compiled Program :
PFXplus, разработчик — Powerflex Corporation
Совместимый с:
Windows |
Нестандартный подход к стандартной характеристике NTC-термисторов
В начале статьи говорилось, что температурная зависимость сопротивления термистора точно описывается выражением (1), однако опытным путем было установлено, что эта же характеристика может быть не менее точно воспроизведена следующим полиномом:
где r(T) — сопротивление терморезистора при температуре Т; А0, А1, А2 … Аn — некие коэффициенты, зависящие лишь от свойств материалов, которые используются при в изготовлении термистора.
Казалось бы, это нисколько не упрощает представление о поведении температурной характеристики термистора, а наоборот — ведет к усложнению из-за переноса температуры в знаменатель и бесконечного числа возможных коэффициентов. Но как показала обработка этой математической модели на «живых» образцах, практически любой термистор можно описать с помощью семи первых членов полинома, так как вклад последующих составляющих в конечное значение сопротивления незначителен:
Тогда, переходя к термопроводимости, мы получим:
где r(T) — сопротивление, кОм; g(T) — проводимость, мСм.
Такая зависимость имеет ряд преимуществ перед экспоненциальной при ее использовании в целях линеаризации характеристики с помощью математического моделирования. Для наглядного представления рассмотрим применение этой зависимости на стандартной R(T) характеристике терморезистора В57861 (S861) с номинальным сопротивлением 10 кОм.
Из представленных данных (табл. 2, рис. 1) видно, что разница между значениями сопротивлений, которые предоставляет производителем в виде табличной характеристики № 8016 , и значениями термосопротивлений, полученными с помощью математической модели, не значительна и не превышает 0,1%, что позволяет в дальнейших математических расчетах пренебречь этими отклонениями. Коэффициенты математической модели, с помощью которых получены расчетные данные, равны:
Рис. 1. Температурная зависимость терморезистора B57861 (S861)
Таблица 2. Характеристика терморезистора В57861 (S861)
Сразу же оговоримся, что представленные коэффициенты подходят только для указанного температурного диапазона и табличной характеристики 8016 NTC-термисторов компании Epcos. Номинальное сопротивление терморезистора в этом случае не имеет значения. Кроме того, ограниченность температурного диапазона не обусловлена невозможностью описания с помощью математической модели, а связана с конкретным применением, для которого проводились эти расчеты.
Последующим этапом реализации практического применения полиноминального представления характеристики термосопротивления является воспроизведение зависимости (12), для чего оказалось достаточным и удобным использование операционного усилителя (ОУ) в неинвертирующей схеме включения (рис. 2).
Рис. 2. Преобразователь R(T) U(T)
Указанная схема будет иметь следующую выходную характеристику:
графическое построение которой представлено на рис. 3.
Рис. 3. Графическое представление линеаризации температурной характеристики
Масштаб координатной сетки температурной зависимости U(T) можно легко менять с помощью резистора обратной связи ROC и резистивного делителя опорного напряжения UREF, состоящего из резисторов R1 и R2. Соответственно, преобразователь R(Т) U(T) с поставленной задачей справляется.
Что такое терморезисторы PTC (позисторы), чем отличаются от термисторов (NTC)
Есть 2 вида теплорезисторов, принцип функционирования аналогичный, отличается лишь направление темп. коэф. (ТКС):
- позисторы — положительный. Сопротивление идет за температурой. Их также часто называют термисторами с положительным ТКС или PTC термисторами;
- термисторы (NTC) — отрицательный. Число Ом движется против направления t° (при ее повышении падает). Часто и те и другие называются этим термином, но если нет уточнения, то данное слово по умолчанию означает именно элемент с Negative temp. Сoef, то есть различают термисторы/позисторы.
Часто PTC (позисторы) и термисторы (NTC) внешне похожи, поэтому надо читать спецификацию, надписи на корпусах:
Обозначение на схемах:
Схематические рисунки для разных запчастей могут быть похожими, поэтому надо внимательно их читать:
Значки ТР могут несколько отличаться, но t° в них присутствует обязательно, у позисторов почти всегда есть буквенно-цифровые обозначения R1, TH1 или RK1 Таким образом, безошибочно можно узнать данные элементы на чертежах.
У PTC две стрелки смотрят вверх, «−» около t° ставят для NTC, так как у него негативный коэффициент.
Наглядное объяснение работы
Принцип работы основывается на взаимосвязанном изменении 2 параметров: температуры внешней среды или самого элемента и его сопротивления (число Ом).
Если взять любой термический резистор, мультиметром замерить сопротивление на нем при обычной комнатной температуре и при его охлаждении/нагревании, то количество Ом будет отличаться. В PTC с ростом температуры значение R будет увеличиваться.
Ассортимент термисторов NTC
Основная классификация по видам связана с производственным процессом, который был использован при изготовлении радиоэлемента:
- бисерные;
- дисковые и чиповые;
- в оболочке из стекла.
Бисерный термистор специально запекается в корпусную часть, сделанную из керамического материала. Сам же компонент — это сплав платины в свинцовом проводе. Отличается данный вид быстрым откликом. Термистор способен бесперебойно функционировать при температурном режиме с высокими показателями.
Чиповые и дисковые терморезисторы, как правило, изготавливаются из металлизированных контактов. Они имеют способность выдерживать воздействие больших токов.
Термисторы, оборудованные стеклянной оболочкой, могут функционировать при температурном режиме +150 градусов и выше. Это герметизированные радиоэлементы, которые запечатаны в стеклянный пузырек, не пропускающий поток воздуха. Они не подвержены воздействию климатических условий, поэтому могут устанавливаться на открытых поверхностях плат.
Все вышеуказанные виды имеют хорошие показатели механической прочности корпуса, высокую чувствительность и надежны на практике, что делает возможным их использование в моторах, флуоресцентных лампах, трансформаторах, электродвигателях с постоянным током не выше 20 А, бытовой, промышленной и автоэлектронике, мобильных устройствах, современных мониторах с характеристиками LCD и HDD.
Виды термических резисторов с положительным ТКС
Рассмотрим виды термических резисторов, для PTC и NTC они одинаковые.
Разновидности по особенностям действия
По типу действия (сработки) есть такие типы ТР:
- с контактным принципом: термопары, датчики, элементы-термометры заполненные и биметаллические;
- бесконтактные. Это терморезисторы с инфракрасным принципом. Распространенные в оборонной отрасли, могут реагировать на тепловые ИК излучения, оптические лучи, выделяемые газами и жидкостями.
Номинал, разновидности по температурным параметрам
Детали чаще рассматриваются в международной системе измерений СИ, в Кельвинах. Переводить К в градусы Цельсия нужно особым образом — сравнивая две шкалы.
Один градус К равен 1° C, но точки на шкалах разнятся: нулю по Цельсию отвечает 273.150 на линейке, градуированной Кельвинами. Также тут есть такая отметка как абсолютный ноль, но это не «0° C» — он равен отметке «−273.150 °C».
Терморезисторы различаются по степени реагирования на определенную температуру так:
- низкотемпературные. Реагируют на t° ниже −102 °C (в Кельвинах 170° К);
- средне. 170…510° К;
- высоко: от 570° К;
- отдельный тип: 900…1300° К.
Первоначальные характеристики терморезисторов — термисторов, позисторов — могут изменяться при функционировании с частыми колебаниями t°.
Устройство и виды
Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:
- NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
- PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».
Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается)
Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).
Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.
Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.
Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.
Основные характеристики:
- Номинальное сопротивление при 25 градусах Цельсия.
- Максимальный ток или мощность рассеяния.
- Интервал рабочих температур.
- ТКС.
Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.
Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.
Проверка, замена температурных датчиков NTC
Сама установка элементарная — датчик втыкается в посадочные гнездо, подсоединяются жилы его кабеля на клеммы, также проводки можно соединить скруткой, пайкой, обжимкой. Обычно проводки питания заходят на плату терморегулятора, термостата.
Ниже на фото замена датчика для измерения температуры в комнате с 5-метровым кабелем для котла отопления. Управление и настройка осуществляется терморегулятором, он может быть в комплекте агрегата или докупается отдельно.
Поломки, диагностика, ремонт
Датчики NTC обычно ломаются из-за влияний среды, например, в котлах, бойлерах на них налипает накипь, внутрь попадает теплоноситель.
Проверка состоит в замере мультиметром сопротивления при определенной температуре и в сравнении результата со спецификацией. В нашем случае 2 тестируемые датчики на фото ниже исправные, R около 10 кОм, что соответствует примерно +25° C (температура помещения, где находятся изделия).
Датчик положили на металлическую гирьку для охлаждения, видим, что сопр. при понижении t° растет (показатель на фото соответствует около +21). На втором фото сенсор сняли с охлаждения — R падает при повышении t°.
Итак, для проверки потребуется термометр, мультиметр и таблица зависимости температуры, которую можно скачать в сети для конкретных моделей датчиков для имеющейся марки котла, холодильника и прочего, пример (правая графа — Омы, левая — °C):
Разновидности симптомов поломки:
- если на датчике нет никакого сопротивления, это означает обрыв;
- если R сильно отличается от спецификации — внутренняя поломка самого термистора;
- сопр. соответствует температуре, но в каком-то интервале детектор начинает врать или вообще перестает измерять. Тогда котел тоже уходит в аварийный режим.
Признаки поломки элемента на котле (подобные и на всех бытовых приборах):
- сразу (неск. сек.) после включения, активации помпы уходит в аварийный режим;
- после сброса ошибки все повторяется;
- после открытия крана горячей воды котел выдает ошибку. Скорее всего, сломан сенсор на патрубке для теплой жидкости;
- внезапная остановка;
- несоответствие выдаваемой температуры настроенным значениям, прибор может постоянно нагревать (пока не сработает ограничение, предохранение от перегрева);
- скачки t° или вообще нет нагрева/охлаждения.
NTС датчик, а тем более его терморезистор, не ремонтируется — надо заменить на аналогичный. Исключение составляют случаи, когда закисли контакты, появилась накипь, и это причина поломки, тогда ножки элементов зачищаются.
Для приборов и оборудования (холодильники, стиралки, котлы, автомобили) такие изделия продаются в спецмагазинах, сервисных центрах.
Желательно иметь в запасе заведомо исправную деталь, чтобы провести диагностику со 100 % точностью. Потребуется всего лишь подключить новый термистор и посмотреть, как будет работать агрегат.
Почти всегда, когда котел, бойлер, пол включается, то есть сама электросистема исправная, но наблюдаются странности, некорректности по работе, связанной с температурой причина в термодатчике. Его проверяют в первую очередь, тем более, что процедура простая. Есть также приборы с самодиагностикой — выдают на дисплее, светодиодами, звуком код ошибки, тогда определить неисправность сенсора еще легче.
Обозначения и расшифровка маркировки
Бывает несколько типов маркировки. Например, из букв или разных цветов, нанесенных полосок или других изображений на поверхность термистора. Все зависит от производителя, конкретного вида элементов. Примерная система обозначений представлена на картинке ниже. Вариантов настолько много, что расшифровать их даже опытному мастеру не всегда удается правильно. В таком случае лучше полагаться на технические данные, которые есть на сайте производителя термистора в описании конкретного элемента.
Разберем пример — термистор NTC с маркировкой 10 D-9. Первая цифра «10» говорит о том, что 10 Ом при 25 градусах Цельсия составляет сопротивление датчика. Его диаметр равен 9 мм. Чем больше будет это значение, тем выше мощность, которую он рассеивает. Чтобы лучше разобраться с маркировкой цветом, следует пользоваться таблицей или смотреть описание характеристик в справочнике. Все производители уточняют эту информацию для линейки своей продукции.
Форма полупроводника может быть разной: тонкие трубы, крупные шайбы, пластины разной толщины и небольшие элементы разных видов. Есть даже детали, габариты которых исчисляются несколькими микронами. На картинке ниже представлен ассортимент полупроводников, встречающихся чаще других на современном рынке.