Как проверить двусторонний стабилитрон
Бывает, что после выпаивания из платы полупроводникового элемента, при изменении полярности на щупах, сопротивление оказывается большим в обоих случаях. Это не обязательно говорит об обрыве. Проверяемый компонент схемы может быть двусторонним стабилитроном. Как проверить стабилитрон мультиметром?
Чтобы протестировать его работоспособность, нужно:
- увеличить прилагаемое напряжение измерения;
- менять полярность, подаваемую щупами тестера на выводы;
- измерять токи и сравнивать ВАХ исследуемой детали.
Совокупность действий поможет определить, исправен или нет такой зенер диод. Зная о том, что в такой радиодетали катоды внутри соединены между собой, необходимо собрать схему.
В схему входят следующие компоненты:
- тестер;
- резистор сопротивлением 1 кОм (R);
- ИП до 30 вольт.
Для измерения все вместе соединяется в схему:
- подключают резистор к « + » источника питания;
- стабилитрон присоединяют на второй контакт резистора;
- щуп тестера подсоединяют с свободному выводу R и клемме « – » ИП;
- прибор включается в разрыв: « + » ИП и « – » ИП;
- на приборе выбирается наиболее подходящий режим.
При проверке зинер диода с напряжением стабилизации схема будет рабочей, если, изменяя Uпит в границах 13-30 В, на дисплее прибора сохраняется в пределах 12 В, даже при смене полярности.
Важно! Никакой измерительный прибор не может гарантировать, что полученные результаты действительно верны. Для проверки нужно включить в схему полупроводник, подать питание и провести измерения, которые выявляют неисправную деталь
free-etalon.ru
Мы предлагаем Розничная и оптовая торговля. Ваше удовлетворение-Наша цель! Сфера ведения бизнеса : автоматический IC, цифровой до аналоговой цепи, один микроскоп, фотоэлектрическая муфта, хранение, трехклеммный регулятор напряжения, SCR, эффект поля, schottky, реле, резисторы конденсаторов, световые трубки, разъемы и другиеостановочные вспомогательные услуги!
Компания продает в мире известных марок электронных компонентов, можете позвонить и заказ! Я надеюсь работать с вами! Запрос Добро пожаловать сотрудничества и консультации пакет! Принципы» Честность, Целостность первый» Наш бизнесцелей, Наши искренние сервис отношение и надежное качество завоевать ваше удовлетворение и доверие, Клиенты Добро пожаловать проконсультироваться пользователя покупки Описание продуктаКартинка только поставляет ссылку это может быть не точно, как в нашем наличии, потому что много другого нет.
Описание продукта ОписаниеGks18 представляет собой модернизированную версию xsd18, когда свет потускнел или сильный Введение продукта : 1 Размер : мм2 На борту кристаллический Осциллятор : 3
Обратите внимание, что в этом списке, содержащем различные модели, вы можете предложить вам больше выбора Сделайте выбор желанного и оставьте сообщение, когда вы посмотрите на pecify, который вы бы хотели!!. В качестве продавца мы могли бы посвятить себя тому, чтобы предлагать лучшие продукты и услуги Добро пожаловать в наш магазин Если вы покупаете больше, пожалуйста, свяжитесь с нами Почему вы непосредственно выбираете нас : Добро пожаловать в магазин!
В качестве продавца мы могли бы посвятить себя тому, чтобы предлагать лучшие продукты и услуги Добро пожаловать в наш магазин Если вы покупаете больше, пожалуйста, свяжитесь с нами Почему вы непосредственно выбираете нас : Добро пожаловать в магазин!
Все наши товары есть Реальные Акции Добро пожаловать в наш магазин Если вы покупаете больше количества, пожалуйста, свяжитесь с нами Почему сразу выбрать нас : Если вы покупаете больше, пожалуйста, свяжитесь с нами.
Купить более частей Использовать «Добавить в корзину» Мы wikk сделать скидку для вас. Название : защиты доскаМодель : Технические характеристикиПревышение заряда : 4. Мы Онлайн. Доступно к заказу. Товары в категории. Купить в один клик. Бесплатная доставка 1 шт. Бесплатная Доставка 10 шт. Mur Импульсный диод новый оригинальный-csyxkj. U mur Быстрый восстановление диода до Новый оригинал csyxkj. Бесплатная доставка 10 шт. Новый 4S 30A
Проверка по схеме стабилизатора
Описанный выше метод не подходит для двусторонних и прецизионных стабилитронов. Как проверить стабилизатор напряжения в этом случае? Нужно включить проверяемые электронные компоненты в схему и приложить напряжение от источника питания. Для этого понадобиться делитель, который состоит из одного или нескольких резисторов. Резистор должен обеспечивать пробой стабилитрона при подаче напряжения от источника питания.
Порядок проверки:
- Положительный провод от блока питания подключается к первому выводу делителя.
- Катодный вывод стабилитрона подключается ко второму выводу делителя.
- Анодный вывод стабилитрона соединяется с отрицательным контактом источника питания.
- Мультиметр в режиме вольтметра включает в схему. Плюсовый вывод подсоединяется ко второму выводу резистора, а минусовый – к общей шине питания (минусовый вывод блока питания).
- Если на первый вывод делителя подать напряжение равное или превышающее напряжение стабилизации, то на выходе оно не должно превышать это значение. Это говорит об исправном стабилитроне. Если элемент пробит или неправильно подключен, то вольтметр покажет ноль. В случае пробитого стабилитрона показания мультиметра будут превышать величину напряжения стабилизации.
Порядок проверки
Проверку производят обычным тестером, переключив прибор в диапазон для измерений диодов или сопротивления.
Подключение мультиметра для проверки
Как проверить резистор мультиметром
Поэлементное описание проверки имеет вид:
- на приборе выбирается режим измерения сопротивления;
- щупы тестера подключаются к выводам детали;
- оцениваются показания прибора, высвечиваемые на дисплее.
Когда собственный источник питания мультиметра подключен плюсовым щупом к аноду, то на дисплее можно зафиксировать показания сопротивления от нескольких долей Ома до его единиц. После замены местами измерительных щупов при исправном элементе получают бесконечно большое сопротивление.
Помня о том, что стабилитрон ведёт себя, как простой диод, устанавливают интервал измерений в кОм. В этом случае сопротивление исправной радиодетали доходит до сотен кОм.
Информация. Показания, выданные на дисплей тестером, часто вводят в заблуждение проводящего измерения. Одинаково высокое сопротивление при различных подключениях щупов не всегда означает пробой элемента. Поданное для измерений напряжение внутреннего источника может превысить номинальное напряжения пробоя, тогда полученные результаты будут ложными.
A3120 HCPL3120 HCPL-3120
ВИДЕО ПО ТЕМЕ: Как ПРОВЕРИТЬ Samsung Перед покупкой с рук 2019 Обратимся теперь к другим зарубежным фирмам, выпускающим драйверные микросхемы для построения преобразовательной техники небольшой мощности. Рассмотрим их подробнее. Номинальное напряжение питания — 15 В. Задержка выходного управляющего сигнала при переходе его из низкого состояния в высокое и обратно — нс. Управляющий вход микросхемы — вывод 4, схема выходного каскада драйвера подключена к выводу 5.
Сведения которые вы знаете про этот сварочный инвертор и отзывы о его работе будут полезны другим посетителям сайта. Порядок вывода комментариев: По умолчанию Сначала новые Сначала старые.
Хотите стать энергонезависимым? Здесь Вы найдете все для осуществления этой мечты. Инвертор своими руками и многое другое на нашем форуме! Ремонт Инверторных Сварочных Аппаратов Все о ремонте или переоборудовании заводских инверторов, стабилизаторов, сварочных аппаратов. Какие встречаются неисправности методы диагностики и ремонта. В ремонт принесли сварочный Ресанта Проблема по словам хозяина — малый ток.
A менять? А соответствуют-ли в принципе показания цифрового дисплея ресанты пн действительности? Я имею ввиду не максимальную мощность, а начало и конец отсчёта?
Параметры и особенности работы устройства
Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами:
1. DIP;
2. SOP;
3. SSOP;
4. Miniflat-lead.
В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:
- Световой диод и оптический регистратор;
- Внутренняя и внешняя сторона корпуса.
В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше. Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.
Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц
Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:
- Проходная ёмкость между световым диодом и транзисторной базой;
- Паразитная ёмкость между коллектором и фототранзисторной базой.
Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.
Оптореле
Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.
Классификация видов оптореле
Для оптореле определено три типа топологий:
- Нормально разомкнутые.Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
- Нормально замкнутые.Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
- Переключающая.Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.
Оптореле подобно оптопаре имеет характеристику по электрической прочности.
Разновидности оптореле
- Модели стандартного типа;
- Модели, имеющие малое сопротивление;
- Модели, имеющие малое СxR;
- Модели, имеющие малое напряжение смещения;
- Модели, имеющие высокое напряжение изоляции.
Тестер оптронов и микросхем 555
Мы советуем потратить немного времени и сделать данный тестер, так как оптроны всё чаще используют в различных радиолюбительских конструкциях. А про знаменитую КР1006ВИ1 вообще молчу — её ставят почти везде. Собственно на проверяемой микросхеме 555 собран генератор импульсов, о работоспособности которого свидетельствует перемаргивание светодиодов HL1, HL2. Далее начинается пробник оптопар.
Работает он так. Сигнал с 3-й ножки 555 через резистор R9 попадает на один вход диодного моста VDS1, если к контактам А (анод) и К (катод) подключен исправный излучающий элемент оптопары, то через мост будет протекать ток, заставляя моргать светодиод HL3. Если принимающий элемент оптопары тоже исправен, то он будет проводить ток на базу VT1 открывая его в момент зажигания HL3, который будет проводить ток и HL4 тоже будет моргать.
Потребовался простой способ проверки оптронов. Не часто я с ними «общаюсь», но бывают моменты, когда надо определить — виноват ли оптрон?.. Для этих целей сделал очень простой пробник. «Конструкция выходного часа».
Внешний вид пробника:
Схема данного пробника очень проста:
Теория:
Оптроны(оптопары) стоят практически в каждом импульсном блоке питания для гальванической развязки цепи обратной связи. В составе оптрона находятся обычный светодиод и фототранзистор. Упрощенно говоря, это, своего рода, маломощное электронное реле, с контактами на замыкание.
Принцип работы оптрона: Когда через встроенный светодиод проходит электрический ток, светодиод (в оптроне) начинает светиться, свет попадает на встроенный фототранзистор и открывает его.
Оптроны часто выпускается в корпусе Dip
Первая ножка микросхемы, по стандарту обозначается ключом, точкой на корпусе микросхемы, она же анод светодиода, далее номера ножек идут по окружности, против часовой стрелки.
Суть проверки: Фототранзистор, при попадании на него света от внутреннего светодиода,
переходит в открытое состояние, а сопротивление его — резко уменьшится (с очень большого сопротивления, до примерно 30-50 Ом.).
Практика:
Единственным минусом данного пробника является то, что для проверки необходимо выпаять оптрон и установить в держатель согласно ключу(у меня роль напоминалки является кнопка тестирования — она смещена в сторону, и ключ оптрона должен смотреть на кнопку).
Далее, при нажатии кнопки, (если оптрон цел), оба светодиода загорятся: Правый будет сигнализировать о том, что светодиод оптрона рабочий(цепь не разорвана), а левый сигнализировать о работоспособности фототранзистора(цепь не разорвана).
(Держатель у меня был только DIP-6 и пришлось залить неиспользуемые контакты термоклеем.)
Для окончательного тестирования, необходимо перевернуть оптрон «не по ключу» и проверить уже в таком виде — оба светодиода не должны гореть. Если же горят оба или один из них, то это говорит нам о коротком замыкании в оптроне.
Рекомендую такой пробник в качестве первого, для начинающих радиолюбителей, которым необходимо проверять оптроны раз в полгода, год)
Существуют и более современные схемы с логикой и сигнализацией о «выходе из параметров», но такие нужны для очень узкого круга людей.
Советую посмотреть у себя в «закромах», так выйдет дешевле, да и время на ожидание доставки не потратите. Можно выпаять из плат.
Добавить в избранное
+73
+105
Параметры и особенности работы устройства
Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами:
1. DIP;
2. SOP;
3. SSOP;
4. Miniflat-lead.
В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:
- Световой диод и оптический регистратор;
- Внутренняя и внешняя сторона корпуса.
https://youtube.com/watch?v=3VGEF0F6zJI
В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше. Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.
Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц
Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:
- Проходная ёмкость между световым диодом и транзисторной базой;
- Паразитная ёмкость между коллектором и фототранзисторной базой.
Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.
Датчик скорости с оптопарой.
Оптореле
Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.
Классификация видов оптореле
Для оптореле определено три типа топологий:
- Нормально разомкнутые.Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
- Нормально замкнутые.Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
- Переключающая.Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.
Оптореле подобно оптопаре имеет характеристику по электрической прочности.
Разновидности оптореле
- Модели стандартного типа;
- Модели, имеющие малое сопротивление;
- Модели, имеющие малое СxR;
- Модели, имеющие малое напряжение смещения;
- Модели, имеющие высокое напряжение изоляции.
https://youtube.com/watch?v=07sCEz-Lmyg
Проверка оптрона
Как можно проверить оптрон? Например так, как на следующей схеме:
Схема проверки оптрона
В чем суть такой проверки? Наш фототранзистор, когда на него попадет свет от внутреннего светодиода, сразу перейдет в открытое состояние, и его сопротивление резко уменьшится, с очень большого сопротивления, до 40-60 Ом. Так как мне эти микросхемы, оптроны требуется тестировать регулярно, решил вспомнить о том, что я ведь не только электронщик, но еще и радиолюбитель), и собрать какой нибудь пробничек, для быстрой проверки оптопары. Пробежался по схемам в инете, и нашел следующее:
Схема конечно очень простая, красный светодиод сигнализирует о работоспособности внутреннего светодиода, а зеленый, о целости фототранзистора. Поиск готовых устройств собираемых радиолюбителями, выдал фото простых пробничков, подобных этому:
Устройство для проверки оптопары с интернета
Это все конечно очень хорошо, но демонтировать каждый раз оптопару а после запаивать ее обратно — это же не наш метод :-). Требовалось устройство для удобной и быстрой проверки работоспособности оптопары, обязательно без выпаивания, плюс замахнулся при этом еще и на звуковую, и визуальную индикацию :-).
Звуковой пробник — схема
У меня был собран ранее простой звуковой пробничек по этой схеме, со звуковой и визуальной индикацией, с питанием от полутора вольт, батарейки АА.
Простой звуковой пробник
Решил, что это то что нужно, сразу готовый полуфабрикат), вскрыл корпус, ужаснулся своему полунавесному монтажу), времен первых лет, изучения мною радиодела. Тогда изготавливал плату, путем прорезания канавок в фольгированном текстолите, резаком. Просьба не пугаться), глядя на этот колхоз.
Внутренности и детали
Решено было пойти, путем изготовления аналога, своего рода пинцета, для быстрой проверки оптрона, в одно касание. Были выпилены из текстолита две маленьких полоски, и посередине их, была проведа бороздка резаком.
Контактные пластины из текстолита
Затем был нужен сжимающий механизм, с пружинкой. В ход пошла старая гарнитура от телефона, вернее клипса, для крепления на одежду, от нее.
Проверка тестером
Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.
Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:
- переключателем устанавливают диапазон измерения Омов;
- к выводам радиодетали подсоединяются измерительные щупы;
- мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
- поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.
Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение.
При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.
Стабилизация вторичных напряжений.
Оптопара выполняет две функции: – передаёт сигнал обратной связи по напряжению от схемы сравнения напряжения вторичной цепи к схеме управления ШИМ в первичной цепи блока питания; – обеспечивает гальваническую развязку (как и трансформатор) вторичных цепей блока питания от первичных цепей (напряжения сети).
Схема стабилизации вторичного напряжения импульсного блока питания работает следующим образом:
Выпрямленное вторичное напряжение подаётся на делитель, средняя точка которого подключена к схеме сравнения.
- Схема увеличивает ток светодиода оптопары при напряжении на входе более 2,5 В, приоткрывается транзистор оптопары и таким образом уменьшается продолжительность управляющих импульсов от схемы управления к силовому транзистору. Цепь этих событий приводит к снижению вторичного напряжения.
- Соответственно схема сравнения уменьшает ток светодиода оптопары при снижении напряжения на входе ниже 2,5 В, что приводит к запиранию транзистора оптопары и увеличению длительности управляющих импульсов от схемы управления к силовому транзистору. Что в итоге приводит к увеличению вторичного напряжения.
В схемах с несколькими вторичными напряжениями схема стабилизации контролирует одно (реже два) вторичное напряжение и по нему (им) регулирует всю группу выходных напряжений. Высыхание ёмкости в той цепи, по которой производится стабилизация всей группы выходных напряжений приводит к увеличению напряжения во всех вторичных цепях. Высыхание ёмкости в любой другой вторичной цепи приводит к снижению напряжения только в этой цепи.
Схемы ИБП с описанием назначения элементов здесь . Схема и принцип действия зарядного устройства HUAWEI здесь
Принцип действия импульсных блоков питания
Ремонт блоков питания спутниковых тюнеров
Зарядное устройство из блока питания ноутбука.
- Заряд аккумулятора постоянным током, напряжение на батарее растёт, до величины 14,4 В (2,4 В на банку)
- Заряд аккумулятора постоянным напряжением 14,4 В (при этом ток заряда постепенно снижается и при 100% заряде близок к 0)
Зарядное устройство из блока питания и ARDUINO.
Устройство заряжает АКБ до 100%, а если был выбран режим тест – разряжает АКБ до уровня 0% и высчитывает величину ёмкости, которую батарея смогла отдать в нагрузку. После окончания теста АКБ опять заряжается до уровня 100%.
Ремонт компьтерного блока питания Q-DION
Huawei 050055E1W
Зарядное устройство для сотового телефона НUAWEI. Схема и описание принципа действия.
Стилус графического планшета TRUST TB-6300
YKF25225-2 представляет из себя генератор, собранный по схеме емкостной трёхточки. Активным элементом генератора является транзистор Q1.
2m 5mm digital USB цифровой эндоскоп с Aliexpress.com
USB 500 X 2 Мп цифровой микроскоп на Aliexpress.com
Установил с диска, который шёл с микроскопом программу. Она мне не понравилась.
Запустил программу видеопроигрывателя, выбрал источник видеосигнала ВЕБ-камера. Микроскоп соединился без проблем.
Главная >> Электроника >> Принцип действия импульсных блоков питания
Мне кажется, что транзисторный оптрон PC817 самый распространенный хотя бы потому, что он стоит практически в каждом импульсном блоке питания для гальванической развязки цепи обратной связи.
Корпус достаточно компактный:
- шаг выводов – 2,54 мм;
- между рядами – 7,62 мм.
Производитель PC817 – Sharp, многие другие производители электронных компонентом выпускают аналоги. И при ремонте электронной аппаратуры можно наткнутся именно на аналог:
- Siemens – SFH618
- Toshiba – TLP521-1
- NEC – PC2501-1
- LITEON – LTV817
- Cosmo – KP1010
Кроме одинарного оптрона PC817 выпускаются его полные аналоги:
- PC827 — сдвоенный;
- PC837 – строенный;
- PC847 – счетверенный.
Проверка оптопары
Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.
Вариант на макетной плате
В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.
Первый вариант схемы
Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p
Поэтому чтобы не возникало путаницы я изменил схему на следующую ;
Второй вариант схемы
Оптопара P817
Второй вариант работал правильно но неудобно было распаять стандартную панельку
SCS- 8
под микросхему
Панелька SCS- 8
Третий вариант схемы
Самый удачный
Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.
в моем варианте Uf = 1.12 Вольт.
В результате получилась такая очень простая конструкция:
Фотодиод, фототранзистор, фототиристор, оптрон, разновидности индикаторов
Вид сверху
Вид снизу
Как видно из фото деталь развернута не по ключу.
Используя которую можно очень быстро проверить деталь. За свою практику ремонтов конечно не часто , но я сталкивался с неработающими оптопарами и раньше мне приходилось заморачиваться над проверкой детали когда иногда бывало заходил в тупик во время сложного ремонта.
Конечный вариант — все очень просто.
PC817 характеристики
- Прямой ток — 50 мА;
- Пиковый прямой ток — 1 А;
- Обратное напряжение — 6 В;
- Рассеяние мощности — 70 мВт.
- Напряжение коллектор-эмиттер — 35 В;
- Напряжение эмиттер-коллектор — 6 В;
- Ток коллектора — 50 мА;
- Мощность рассеяния коллектора — 150 мВт.
Есть ещё важный параметр — коэффициент передачи по току (CTR) измеряемый в %. В оптопаре PC817 он определяется буквой после основного кода, также как и большинстве других оптопар и других полупроводниковых приборов.
№ модели | Метка коэффициента | CTR (%) |
PC817A | A | 80 — 160 |
PC817B | B | 130 — 260 |
PC817C | C | 200 — 400 |
PC817D | D | 300 — 600 |
PC8*7AB | A или B | 80 — 260 |
PC8*7BC | B или C | 130 — 400 |
PC8*7CD | C или D | 200 — 600 |
PC8*7AC | A,B или C | 80 — 400 |
PC8*7BD | B,C или D | 130 — 600 |
PC8*7AD | A,B,C или D | 80 — 600 |
PC8*7 | A,B,C,D или без метки | 50 — 600 |
Проверка простой схемой включения транзистора
Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например
Обратите внимание на 10Ком резистор, который включается в базу транзистора
Это очень важно, иначе транзистор “сгорит” во время проверки. Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть. Эта схема для проверки npn-транзисторов
Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания
Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.
Проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.
Способы проверки
Существует несколько способов, позволяющих проверить микросхему на работоспособность.
Внешний осмотр
Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.
Проверка работоспособности с помощью мультиметра
Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.
Выявление нарушений в работе выходов
Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.
Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.
Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.
Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.