Подробно о напряжении светодиода

Содержание

Светодиоды типа SMD

Такие элементы имеют более широкое назначение, что связано с основными характеристиками. Принцип работы светодиодов данного типа позволяет организовывать освещение различных форматов. Полупроводниковые приборы с фиксированной печатной платой имеют компактные габариты, благодаря чему они могут использоваться даже в самых маленьких светильниках.

Базовая часть корпуса, на которую фиксируется кристалл, обладает высокой теплопроводностью, поэтому отвод тепла производится эффективно. Обычно между линзой и основным элементом укладывается слой люминофора, предоставляющий возможность нейтрализовать ультрафиолет, а также задать определенную цветовую температуру. В изделиях с рассеянным излучением линза не устанавливается. Сам элемент по форме напоминает параллелепипед.

От чего зависит цвет светодиода

Варианты получения излучения белого светодиода

При изготовлении светодиодов применяются различные типы полупроводниковых материалов, выбор которых определяет излучаемый ими цветовой оттенок.

Умение различать цвет – врожденное свойство человеческого глаза, способного с большой точностью улавливать его градации. Оно неразрывно связано с длиной волны квантового излучения, которое несут с собой электромагнитные волны определенной частоты. В данном случае световые импульсы формируются на границе полупроводникового перехода светодиода.

При исследовании свойств различных полупроводников на ранней стадии их изучения учеными были выявлены такие материалы, как фосфид галлия, а также тройные соединения AlGaAs и GaAsP. При их использовании удавалось получать красное и желто-зеленое излучение. Сегодня с целью получения различных сочетаний цветов применяются более сложные по структуре комбинации алюминия с индием и галлием (AllnGaP) или индий-нитрид галлия (InGaN). Эти полупроводники способны выдерживать значительные по величине токи, что позволяет получать от них высокую световую отдачу.

Кто придумал светодиод

В справочниках написано,что туннельный диод изобрел в 1958 году Лео Эсаки(в 1973 году он получил за это Нобелевскую премию), а светодиод — Ник Холоньяк в 1962 году. Между тем простой советский лаборант опередил обоих более чем на 30 лет.

Уже в детстве Олег Лосев твердо знал, чему посвятит свою жизнь. В 1917 году он побывал на лекции начальника военной радиоприемной станции, и с этого момента для него перестало существовать все, кроме «беспроволочного телеграфа». После школы Олег Лосев, не сумев поступить в Московский институт связи, благодаря случайному знакомству с профессором Рижского политехнического института Владимиром Лебединским, первым председателем Российского общества радиоинженеров (РОРИ), оказался в Нижегородской радиолаборатории (НРЛ). НРЛ в то время была инновационным центром, где велись и фундаментальные, и прикладные научные исследования в области зарождавшейся тогда электроники и электротехники.

В НРЛ Лосев, работавший лаборантом, решил заняться исследованием кристаллических детекторов для радиоприема. Эти элементы были капризными, но казались ему более перспективными, чем громоздкие и прожорливые электронные лампы. К тому же экспериментировать с детекторами Лосев, исследователь-одиночка по своему характеру, мог полностью самостоятельно — передвигая контактную иголочку на мельчайшие доли миллиметра по поверхности кристалла.

Он исходил из предпосылок, что «некоторые контакты… между металлом и кристаллом не подчиняются закону Ома, вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания». Он заблуждался: уже было известно, что для генерации нужна не просто нелинейность вольтамперной характеристики, а падающий участок (именно такой участок обеспечивают современные лавинные диоды).

Но Лосев оказался очень везучим — на контакте цинкита с угольной иголкой он обнаружил этот эффект, добившись первого в мире гетеродинного радиоприема на основе полупроводниковых элементов. В 1922 году статья Лосева о новых радиоэлементах, названных «кристадинами», вышла в журнале «Телеграфия и телефония без проводов» («ТиТбп»). Позднее статьи Лосева о кристадинах публиковались ив советских («ЖЭТФ», «Доклады АНСССР»), и в зарубежных (The Wireless World and Radio Review, Radio News, Radio Revue, Philosophical Magazine, Physikalische Zeitschrift) журналах.

Совершенствуя кристадин, Лосев экспериментировал с различными материалами полупроводников и контактных иголок и в 1923 году обнаружил на стыке карборунда и стальной проволоки слабое свечение. Явление было названо «свечением Лосева», а первооткрыватель получил патент на «световое реле» (фактически первый полупроводниковый светодиод!) и (в 1938 году) — научную степень кандидата физико-математических наук без защиты диссертации. После реорганизации НРЛ Лосев переехал в Ленинград, где продолжал исследования до самого начала войны. А в 1942 году изобретатель погиб от голода в блокадном городе, а его работы так и остались незаконченными.

Статья «Свет грядущего» опубликована в журнале «Популярная механика» (№8, Август 2013).

Принцип работы и устройство ламп.

Конструкция LED лампы.

Светодиодный источник света состоит из нескольких элементов, соединенных в одном корпусе. Это цоколь, драйвер, радиатор, светодиод и светорассеивающая колба.

  • Цоколь – элемент, который вкручивается в патрон люстры или другого светильника. Чаще всего для бытового применения выпускают винтовой цоколь типа Е27 и Е14. Он изготовлен из латуни с никелевым антикоррозийным покрытием. Для других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение, преобразуя переменный ток в постоянный. Также он обеспечивает питание светодиода. Драйвер состоит из микросхем, импульсного трансформатора, конденсаторов. В недорогих LED изделиях драйвер может отсутствовать. Вместо него применятся простой блок питания, не обеспечивающий стабилизации тока и напряжения. Также драйвер не устанавливают в миниатюрных лампочках из-за нехватки места внутри корпуса.
  • Радиатор – элемент, который отводит тепло от светодиодов и обеспечивает для них оптимальный температурный режим работы. Обычно он составляет видимую часть корпуса осветительного прибора. Радиатор может изготавливаться из различных материалов: от дорогой керамики до дешевого пластика. Алюминиевые и композитные материалы занимают среднюю нишу: они достаточно бюджетны и качественно отводят тепло.
  • Рассеиватель – прозрачный «колпак», который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик. Кроме этого рассеиватель предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы. За счет работы диода и появляется свечение.

Принцип работы светодиодных ламп основан на физических процессах в полупроводниках. Свечение появляется после прохождения электрического тока через границу соприкосновения двух полупроводников (n и p), в одном из которых должны преобладать отрицательно заряженные электроны, а в другом – положительно заряженные ионы. Стоит отметить, что данные материалы пропускают ток только в одну сторону. При его прохождении в носители заряда осуществляют рекомбинацию – электроны переходят на другой энергетический уровень. В результате появляется видимое глазу световое излучение. Кроме свечения происходит еще и выделение тепла, которое отводится от светодиода при помощи радиатора.

Схема появления оптического излучения в LED-элементе.

На заре появления светодиоды могли испускать только определенную световую волну: зеленую, красную или желтую. Поэтому LED-элементы встраивались в электрические схемы в виде индикаторов. В процессе развития микроэлектроники были найдены материалы, позволяющие получить световую волну широкого спектра. Однако полностью эта проблема не решена: в свечении светодиодных ламп преобладает или синяя длина волны или красная с желтым.  По этой причине они и делятся на холодные и теплые соответственно.

Устройство светодиодных источников света

Светодиодный источник состоит из следующих конструктивных элементов:

  • LED-диоды;
  • драйверы;
  • корпус;
  • радиатор;
  • цоколь.

Светодиоды

Несколько лет назад конструкция светодиодной лампы незначительно отличалось из-за отсутствия широкого ассортимента LED-диодов. Самыми распространенными были чипы на 3–5 мм. Позже появились изделия на 10 мм.

Сегодня светодиодов намного больше. Чаще всего используются SMD 5050, SMD 3528, SMD 5730, SMD 2835, 1W, 3W и 5W.

Количество светодиодов бывает разным, его задает производитель. При монтаже нескольких диодов производят специальные расчеты, чтобы вывести оптимальный ток потребления. Припой осуществляется к текстолитовым или алюминиевым платам. Светодиоды собираются в группы, соединяемые последовательно. Опять же, количество групп неограниченно.

Последовательное соединение обеспечивает постоянный ток, но есть существенный недостаток — если выйдет из строя хотя бы один LED-диод, то перестает работать все изделие. С другой стороны, диод можно без проблем заменить на новый.

Платы, к которым припаиваются источники света, классифицируются по форме и бывают круглыми, прямоугольными, овальными, многоугольными и т. д.

Драйверы

Драйверы предназначены для преобразования входящего напряжения в пригодную для питания устройства величину. Причем питание для каждой группы светодиодов может быть разным. Самыми распространенными являются трансформаторные схемы с драйверами.

Конструктивные элементы могут быть двух типов — открытыми и закрытыми (в корпусе). Монтируют их в корпус ламп, осветительных приборов.

Китайские производители нередко пытаются сэкономить на приборах, устанавливая вместо драйверов обычные ограничители тока со схемой на основе конденсатора. Избегайте покупки таких изделий, поскольку помимо крайней неэкономичности они негативно воздействуют на здоровье человека (высокая пульсация).

Цоколь

Поскольку светодиодные изделия позиционируются как лучшие аналоги лампам накаливания, то нет ничего удивительного в том, что они изготавливаются со стандартными цоколями — E27 и E14. Последние часто применяются в ночных и настенных светильниках.

За рубежом иные стандарты, поэтому там чаще можно встретить светодиодные лампы E26.

Корпус

В отличие от ламп накаливания для светодиодных нет необходимости в полной герметичности колб, да и газовая среда внутри отсутствует. Одна из разновидностей светодиодных светильников — филаментный источник, повторяющий устройство лампы накаливания и нуждающийся в газовой среде.

Радиаторы

Данные электротехнические изделия боятся высокой температуры и перегрева. По этой причине для повышения срока эксплуатации необходимо устройство для отвода тепла. Алюминиевые платы частично снижают влияние перегрева, но этого недостаточно. Дорогие и качественные лампы обязательно используют радиаторы, размер которых зависит от количества светодиодов в приборе.

Наличие радиатора повышает стоимость и габариты изделия, но является обязательным условием для создания качественного и долговечного прибора.

Лазерные диоды

Лазерные устройства – это отдельный вид светодиодов, который не относиться ни к индикаторным, ни к осветительным. Да и технология его создания мало чем напоминает производство стандартных led-элементов.

По сути, это полупроводниковый лазер, который построен на базе светодиода. При включении они излучают очень узкий световой пучок. Современные устройства имеют угол рассеяния от 5 до 10°. В продаже имеются устройства, которые работают в видимом диапазоне, а также инфракрасные и ультрафиолетовые лазерные диоды.

Такие кристаллы устанавливают в лазерные указки, целеуказатели, приводы оптических дисков, оптические мыши и т. д.

Расчет резистора для светодиода

Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.

Вычисление номинала сопротивления

Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.

Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p – n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.

Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку

Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике

Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:

  • Инфракрасный — до 1.9 В.
  • Красный – от 1.6 до 2.03 В.
  • Оранжевый – от 2.03 до 2.1 В.
  • Желтый – от 2.1 до 2.2 В.
  • Зеленый – от 2.2 до 3.5 В.
  • Синий – от 2.5 до 3.7 В.
  • Фиолетовый – 2.8 до 4 В.
  • Ультрафиолетовый – от 3.1 до 4.4 В.
  • Белый – от 3 до 3.7 В.

Рисунок 1 – схема подключения светодиода

Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.

Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:

R = U (R)/ I,

где, U (R) — падение напряжения на резисторе

I – ток в цепи

Расчет U (R) на резисторе:

U (R) = E – U (Led )

где, U (Led) — падение напряжения на светодиодном элементе.

С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.

Подбор мощности резистора

Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.

Устройство и принцип действия

Светодиоды излучают свет благодаря наличию p-n-перехода. На этом участке контактируют носители заряда p- и n-типа. Катод (n-тип) – это полупроводник с отрицательным зарядом, а анод (p-тип) является носителем положительного заряда (дырки). То есть, в первом образуются дырки (участки, где нет электронов), а второй скапливает электроны. На их поверхности размещены контактные площадки из металла, к которым прикреплены выводы методом пайки.

Когда к полупроводнику р-типа поступает положительный заряд, а к электрону n-типа – отрицательный, то на границе между диодом и катодом начинает протекать ток. При прямом включении отрицательные и положительные электроны встречаются, и на участке перехода (p-n-переход) происходит их рекомбинация (обмен). При подаче отрицательного напряжения со стороны катода на область р-типа, то происходит прямое смещение. Свечение появляется при выделении фотонов в результате обмена.

Схема ЛЕД драйвера на 220 вольт

Схема ЛЕД драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность.

Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но, если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

  1. Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
  2. делитель напряжения на ёмкостном сопротивлении;
  3. диодный мост;
  4. каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр. Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Светодиод символ

Символ схемы для светодиода относительно прост. Символ СИД содержит диодный символ с двумя стрелками, указывающими наружу, чтобы обозначать, что свет исходит от диода.

Светодиод, схема светодиода.

Иногда символ светоизлучающего диода показан только как контур и без заполненных фигур. Форма контура одинаково приемлема.

Альтернативный вид светодиода, светодиодный индикатор цепи.

Также можно увидеть другие версии светодиодных символов. Иногда символ светоизлучающего диода может быть заключен в круги. Этот символ не так широко используется в наши дни, но все еще можно увидеть на многих схемах.

Интересующие вопросы

Теперь принцип работы светодиодов стал понятен, однако многие пользователи задают различные вопросы по этой теме.

  1. Какие параметры влияют на срок службы полупроводникового прибора? Есть утверждение, что светодиоды долговечны, но это не совсем так. При высокой силе тока в процессе эксплуатации увеличивается температура, поэтому более мощные устройства быстрее выходят из строя.
  2. Ухудшается ли цветовая передача светодиодов со временем? При длительной эксплуатации приборов происходит определенное изменение оттенка, но в настоящее время не существует каких-либо стандартов, позволяющих выразить это в количественном отношении.
  3. Не являются ли устройства вредными для человеческого глаза? Какие-либо сведения о негативном воздействии полупроводниковых элементов на данный момент времени отсутствуют.
  4. Почему необходимо стабилизировать электрический ток, проходящий через LED-устройство? Даже небольшие изменения напряжения способны привести к колебаниям яркости.
  5. Каким образом можно получить белый свет? Есть три основных варианта. Первый из них предполагает смешение компонентов палитры с применением технологии RGB. Второй вариант подразумевает нанесение три люминофора непосредственно на поверхность полупроводникового прибора, излучающего поток света в ультрафиолетовом диапазоне. В третьем способе люминофор наносится на голубой элемент.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Историческая справка

Исторически изобретателями светодиодов считаются физики Г. Раунд, О. Лосев и Н. Холоньяк, которые по-своему дополняли технологию в 1907, 1927 и 1962 годах, соответственно:

  1. Г. Раунд исследовал излучение света твердотельным диодом и открыл электролюминесценцию.
  2. О. В. Лосев в ходе экспериментов открыл электролюминесценцию полупроводникового перехода и запатентовал «световое реле».
  3. Н. Холоньяк считается изобретателем первого светодиода, применяемого на практике.

Светодиод Холоньяка светился в красном диапазоне. Его последователи и разработчики дальнейших лет разработали жёлтый, синий и зелёный светодиоды. Первый элемент высокой яркости для применения в волоконно-оптических линиях был разработал в 1976 году. Синий светодиод  LED был сконструирован в начале 1990-х трио японских исследователей: Накамура, Амано и Акасаки.

В нынешнем мире светодиоды встречаются повсеместно:

  • в наружном и внутреннем освещении светодиодными лампами и лентами;
  • как индикаторы для буквенно-цифровых табло;
  • в рекламной технике: бегущих строках, уличных экранах, стендах и т.п;
  • в светофорах и уличном освещении;
  • в дорожных знаках со светодиодным оснащением;
  • в USB-устройствах и игрушках;
  • в подсветке дисплеев телевизоров, мобильных устройств.

Что такое OLED?

OLED – это органические полупроводниковые светодиоды, которые производятся из органических компонентов, которые светятся при прохождении электрического тока. Для их производства применяются многослойные тонкоплёночные структуры из различных полимеров. Принцип действия таких светодиодов также базируется на p-n-переходе. Преимущества OLED проявляются в сфере дисплеев – по сравнению с жидкокристаллическими и плазменными аналогами они выигрывают по яркости, контрастности, энергопотреблению и углам обзора. Технология OLED не используется для производства осветительных и индикаторных светодиодов.

Основные технические характеристики

Существует несколько параметров, характеризующих светодиоды.

  1. Яркость выражается в единицах силы света. Она пропорциональна величине проходящего через полупроводниковый элемент электрического тока. С увеличением напряжения повышается уровень яркости.
  2. Сила тока может быть пульсирующей или постоянной. Она может колебаться в широком диапазоне. Индикаторные приборы могут иметь силу тока всего 20 мА, а одноваттные аналоги – 300-400 мА.
  3. Длина волны оказывает влияние на цветовую гамму. Ее измерения производятся в нанометрах. Границы волны сопоставляются с базовыми компонентами палитры необходимым образом.

Цветовая гамма испускаемого излучения меняется при введении в полупроводниковый материал химически активных веществ.

Как подключить

Подключение инфракрасного светодиода ничем не отличается от подключения обычного светоизлучающего. И тот, и другой включаются в цепь постоянного тока через ограничивающий резистор, обеспечивающий номинальный рабочий ток прибора. Ну и не стоит забывать, что инфракрасный светодиод – прибор полярный, поэтому на его анод нужно обязательно подавать «плюс», а на катод – «минус». При этом место включения резистора в цепь роли не играет.

Для того чтобы рассчитать номинал токоограничивающего резистора, необходимо знать:

  • падение напряжения на светодиоде при прямом включении (есть в паспорте);
  • номинальный рабочий ток светодиода (есть в паспорте);
  • величину питающего напряжения.

Сам же расчет исключительно прост. Из напряжения питания вычитаем напряжение падения на полупроводнике и находим напряжение падения на резисторе:

U = Uпит. – Uпадения на светодиоде

Теперь рассчитываем номинал резистора, который обеспечит нужный нам ток через цепь, воспользовавшись законом Ома:

R = U/ I

где:

  • R – искомое сопротивление резистора в Омах;
  • U – падение напряжения на резисторе (см. первую формулу) в вольтах;
  • I – номинальный ток через светодиод в амперах.

Если светодиод относительно мощный, то вместо резистора используется драйвер – электронный стабилизатор тока. Понадобится драйвер и в том случае, если питающее напряжение нестабильно.

Важно! Драйвер должен обеспечивать точно такой же или меньший ток, на который рассчитан конкретный светодиод

В нижней части рисунка указано соответствие номинала резистора необходимому току.

Особенности светодиодов

Излучение приборов находится в прямой зависимости от угла направленности, который зависит от конструкции.

Определенное влияние на интенсивность излучения оказывают:

  • материал, применяющийся непосредственно для защиты кристалла;
  • установленная линза.

Полупроводниковый прибор способен выделять не только узконаправленный, но и рассеянный свет. Температурный режим внешней среды может оказывать влияние на свойства светодиодов. От него зависит их яркость. При повышении температуры свечение становится тусклее, а при понижении – ярче. В связи с этим сфера эксплуатации имеет особое значение.

Высокие требования предъявляются к продукции, предназначенной для наружного применения. Она должна исправно функционировать при значительных колебаниях температур. Яркость света в ходе эксплуатации не должна заметно изменяться. Современные решения позволяют обеспечить нормальное свечение, независимо от температуры окружающей среды.

Принцип работы светодиода основывается на высокой скорости действия.

Излучение появляется в течение нескольких секунд после прямого воздействия электрического тока непосредственно на полупроводник.

Изготавливаемые приборы могут иметь технологические отличия, от которых будет зависеть сфера применения.

Основные выводы

На осветительном рынке представлены разные виды светодиодов. При выборе изделия нужно ознакомиться с его характеристиками, чтобы подобрать наиболее подходящее для вас

Важно учитывать величину тока, напряжение, сопротивление, мощность светового излучения, угол свечения, цветовую температуру. Также необходимо уметь расшифровать маркировку на ЛЕД-устройстве, которая указывает на его размер

Кроме того, необходимо знать, что существуют индикаторные и осветительные светодиоды. Первые применяются для цветовой индикации, а вторые – для освещения. Если вы будете разбираться в этой информации, то без проблем подберете наиболее подходящие led-элементы для конкретных целей.

Предыдущая

Лампы и светильникиОсобенности и характеристики распространенных типов ртутных ламп

Следующая

Лампы и светильникиКак правильно паять светодиодную ленту