Управление шаговым двигателем
Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.
Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.
Полношаговый — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.
Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.
Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.
Без контроллера
Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.
Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.
С контроллером
Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.
Популярные схемы управления ШД
Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.
В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.
Форма обратной связи
Во время процесса общения обратная связь может принимать разные формы:
Быть оценочной, когда человек разными способами показывает свое одобрение или отрицательную реакцию, или не содержать оценку.
Подразумевать конкретный источник, например, «я уверен…» или не определять его: «некоторые люди считают».
Иметь эмоциональную окраску или быть без нее. В пример можно привести ответ на заявлении: «Отказать в просьбе».
Ответная реакция может быть вербальной и невербальной, то есть выражаться словесно или при помощи жестов, мимики
Важно, чтобы эти виды связи сочетались и дополняли друг друга.
Типы операционных усилителей
Все выпускаемые на сегодняшний момент операционные усилители можно условно разделить на несколько групп, которые характеризуются общей схемотехникой, динамическими и технологическими характеристиками. Необходимо отметить, что некоторые типы операционных усилителей можно отнести сразу к нескольким группам.
Типы операционных усилителей:
- — быстродействующие широкополосные;
- — прецизионные (высокоточные);
- — общего применения;
- — общего применения;
- — многоканальные;
- — мощные и высоковольтные;
- — микромощные.
Быстродействующие широкополосные операционные усилители имеют высокую скорость нарастания выходного сигнала, малое время установления и высокую частоту единичного усиления. Применяются для высокочастотных сигналов.
Прецизионные (высокоточные) операционные усилители имеют небольшое значение напряжения смещения и низкий уровень шумов, а также большим коэффициентом усиления и подавления синфазного сигнала, большим входным сопротивлением. Применяются для усиления малых электрических сигналов.
Операционные усилители общего применения применяются в схемах, которые допускают погрешность на уровне 1%. Имеют средний уровень параметров и наибольшее распространение.
Операционные усилители с малым входным током имеют уровень входного тока прядка десятков пикоампер (IВХ ≤ 100 пА). Входные каскады данных усилителей построены на основе полевых транзисторов.
Многоканальные операционные усилители служат для улучшения массогабаритных показателей и имеют параметры аналогичные ОУ общего применения или микромощным усилителям.
Мощные и высоковольтные операционные усилители содержат выходные каскады построенные на мощных высоковольтных элементах и имеют выходной ток IВХ ≥ 100 мА и выходное напряжение UBЫX ≥ 15 В.
Микромощные операционные усилители применяются там, где необходимо ограничить потребляемый ток, например приборы с автономным питанием, работающие в ждущем режиме. Потребляемый ток составляет IПОТ.МАКС ≤ 1 мА.
Многие могут задаться вполне логичным вопросом, почему операционным усилителям отводится существенное место в современной радиоэлектронике. Ответ довольно прост, ОУ имеет очень большой коэффициент усиления напряжения и тока, что позволяет при использовании обратной связи практически не учитывать усиление ОУ, а расчёт коэффициента усиления схемы регулировать только параметрами цепи обратной связи.
Такая цепь обратной связи, называется отрицательная обратная связь и она является основой работы всех операционных усилителей. О принципах работы операционных усилителей с отрицательной обратной связью я расскажу в своих следующих статьях.
Принцип обратной связи
Это то благодаря чему общение становится целесообразным и эффективным. Обратная связь основывается на нескольких принципах:
- Конкретность. Информация, которой обмениваются участники коммуникации, должна быть проверенной и понятной.
- Конструктивность. Этот принцип основан на формировании собственных целей общения, но не на оказании давления на другого участника коммуникации. Конструктивная обратная связь реализуется с помощью использования «Я-сообщений» вместо «Вы-сообщений». Например, следует сказать: «Мне хотелось бы выразить свое мнение по этому вопросу», а не: «Вы не правы».
- Своевременность. Запоздалая обратная связь неэффективна.
- Продуктивность. Принцип предполагает нацеленность на достижение определенных результатов общения.
7 основных принципов обратной связи
Планируете разговор с сотрудником? Хотите, чтобы наверняка сработало? В таком случае начните с цели! Определите, чего хотите достичь от разговора с сотрудником. Вам будет намного легче выстроить диалог
Однако независимо от этого важно соблюдать следующие правила:
Говорите по существу.
«Ты появился на рабочем месте в 10:15. Это уже не первый случай, давай обсудим?» Есть ситуация и конкретная тема для разговора. В то время как фраза: «Ты вечно спишь до последнего и постоянно опаздываешь!» – обобщение, генерализация – повод для конфликтов и любимый прием манипуляторов. Так не получится дать обратную связь качественно
Важно быть как можно более конкретным.
Не тяните с обратной связью.
Важно решать проблемы сразу после того, как они случились. «Сегодня, ты работала с этим VIP- клиентом
Давай проанализируем, что получилось в этот раз». Для сравнения: «Два месяца назад ты обслуживала этого VIP-клиента, помнишь? Я бы хотел разобрать ошибки, которые ты допустила». А помнит ли сотрудник, что конкретно произошло два месяца назад, актуально ли это на сегодня, поможет ли ей это спустя время или могло бы помочь, получи она обратную связь сразу после ситуации?
Приводите конкретные факты.
«Я вижу, ты не пользуешься новой анкетой при работе с этим клиентом?» Что осознает сотрудник? Руководитель внимательно наблюдал за его работой, ему не безразличны его результаты, он заинтересован в росте сотрудника. Это важно! А если так: «Говорят, ты совсем перестал использовать анкету в работе с этим клиентом!» Такой диалог нельзя назвать полноценным. Все что вы получите – игру в нападение и защиту. Это не та цель, в которой заинтересован руководитель.
Позволяйте сотруднику высказываться.
Побуждайте к общению. «Как ты считаешь, что сделает клиент, который хотел сделать заказ в нашей компании, но не дозвонился в 9:30? Что мы можем предпринять, чтобы подобные ситуации впредь не повторялись?» Дайте возможность сотруднику высказаться. Важный принцип работы обратной связи – побудить к самостоятельности, вызвать чувство ответственности за принятые решения и действия или бездействие. К тому же, не дав слова сотруднику, вы не увидите его понимания ситуации, лишите себя важной информации или даже попадете в неловкое положение.
Не переходите на личности. Обсуждайте только действия и события.
Можно за секунды приклеить человеку ярлык. «Ты – эгоист! Думаешь только о себе!» Высказавшись подобным образом, вы рискуете навсегда лишить подопечного мотивации к взаимопомощи и поддержке в коллективе, уничтожите стремление к командной работе. Ведь он эгоист, и вы лично возвели его в этот ранг.
Кто-то воспримет как личное оскорбление, запомнит и начнет настраивать против вас остальной коллектив, кто-то просто перестанет стараться и уйдет в себя. Зависит от черт характера конкретной личности. Но руководителю важно не допускать подобных ошибок. Подберите другие слова: «Я ценю твое стремление использовать все возможности для работы с клиентом. Однако важно соблюдать корпоративные стандарты и не выходить за пределы разума. Подумай, как твои действия могут отразиться на имидже компании в глазах клиентов?»
Хвалите прилюдно. Критикуйте только наедине.
На то есть несколько причин. Прилюдная критика – мощный демотиватор. Во-первых, в России принято поддерживать обиженных. Даже если они изначально не правы. Вы рискуете получить осуждение коллектива и потерять доверие сотрудников. Во-вторых, если случится так, что вы не правы, – окажетесь врагом для всех.
В-третьих, похвала – совсем другое дело. Это целое искусство. «Очень хорошо, что ты смогла так быстро успокоить клиента, но почему ты не рассказала о новом продукте?» Что это? Похвала или критика? Не совсем понятно, правда? А так: «Как тебе удалось так быстро успокоить клиента, поделишься секретом?» – вот так намного эффективней! Вы и похвалили, и заметили правильную тактику, и сделали комплимент, повысив мотивацию.
Говорите о том, что можно изменить.
Это касается тех моментов, когда вы хотите нацелить сотрудника на развитие определенных навыков и корректировке поведения. Не сработает следующее: «Да, кажется у нас проблема. Вряд ли получится завоевать расположение клиентов с таким тихим голосом».
Но встает вопрос, чем думал руководитель, когда принимал на работу сотрудника. Теперь придется помочь ему развить нужные для работы качества! Например: «А что если тебе сесть с этой стороны? Думаю, клиенты будут лучше тебя слышать. И да, может быть, попробуем использовать в работе микрофон?»
Применяя правильно основные принципы предоставления обратной связи, вы скоро заметите, насколько продуктивнее стали ваши встречи с сотрудниками.
Классы работы транзистора в усилителе
Примем, что на вход усилителя подается синусоидальный сигнал.
Различают классы А, АВ, В, С и D в зависимости от положения начальной рабочей точки (статического режима) и величины входного напряжения. Основными характеристиками этих режимов являются нелинейные искажения и КПД. Работа усилителя в соответствующем режиме поясняется с помощью придаточной характеристики на рисунке:
Uвых.А – действует в течение всего периода Uвх.А. Uвых.В – действует в течение половины периода Uвх.В. Uвых.С – действует в течение интервала, меньшего половины периода Uвх.С.
Класс А подразумевает работу на линейной части характеристики с малым сигналом Uвх и сравнительно большой постоянной составляющей Uвх.п. Нелинейные искажения минимальны. Однако КПД резко превышает 0,35. Применяются в высококачественных линейных усилителях.
Класс В характеризуется работой с большим сигналом Uвх. Захватывается нелинейный участок передаточной характеристики. Форма выходного напряжения искажается (полусинусоида). Однако КПД достигает 80%. Применяется в 2-х тактных усилителях мощности.
Класс С характеризуется тем, что входное напряжение больше, чем в классе В. Выходное напряжение действует в течение времени меньшего, чем половина периода. Режим сопровождается большими искажениями усиливаемого напряжения, но КПД приближается к единице. Применяется в избирательных усилителях и автогенераторах.
Класс АВ является промежуточным между А и В.
Класс D — ключевой (транзистор находится или в насыщении, или в отсечке).
Как правильно давать обратную связь
Я рекомендую давать обратную связь по такой схеме:
- Найдите положительные стороны: выделите в работе сильные места, отметьте их, похвалите человека.
- Оцените работу конструктивно: если вы видите слабые места или недочеты, уважительно укажите на них, предложите, как можно улучшить работу, если возможно, подкрепите слова фактами, ссылками на источники.
- Предложите возможные пути решения проблемы: если у человека есть трудности или вопросы, подскажите, где можно найти ответы, как подступиться к проблеме, какой может быть первый шаг, подтолкните человека к решению.
Пример. Представим, что вы даете обратную связь по итогам недели: (1) У тебя отлично получилась первая задача, классное решение! Занесем его в нашу базу знаний. (2) Я посмотрела твой код, все работает правильно, но обычно мы оформляем его немного по-другому. Посмотри, пожалуйста, пункт № 5 в документации, там подробно все описано. (3) Я вижу, что третья задача пока идет медленнее, чем мы рассчитывали. Когда-то мы делали похожий функционал, посмотри , как мы его реализовали, возможно, это поможет с твоей задачей.
Что такое шаговый двигатель?
Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.
В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.
Преимущества и недостатки шагового электродвигателя
К преимуществам эксплуатации шагового двигателя можно отнести:
- В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
- Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
- Обеспечивает высокую скорость старта, реверса, остановки;
- Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
- Для позиционирования шаговому двигателю не требуется обратной связи;
- Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
- Сравнительно меньшая стоимость относительно тех же сервоприводов;
- Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.
К недостаткам применения шагового двигателя относятся:
- Может возникать резонансный эффект и проскальзывание шагового агрегата;
- Существует вероятность утраты контроля из-за отсутствия обратной связи;
- Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
- Сложности управления из-за особенности схемы
Отличия реальных ОУ от идеального[править | править код]
Параметры ОУ, характеризующие его неидеальность, можно разбить на группы:
Параметры по постоянному токуправить | править код
- Ограниченное усиление: коэффициент Gopenloop не бесконечен (тпичное значение 105 ÷ 106 на постоянном токе). Этот эффект заметно проявляется только в случаях, когда коэффициент передачи каскада с ОУ отличается от парметра Gopenloop в небольшое число раз (усиление каскада отличается от Gopenloop на 1÷2 порядка или еще меньше).
- Ненулевой входной ток (или, что почти то же самое, ограниченное входное сопротивление): типичные значения входного тока составляют 10-9 ÷ 10-12 А. Это накладывает ограничения на максимальное значение сопротивлений в цепи обратной связи, а также на возможности с источником сигнала. Некоторые ОУ имеют на входе дополнительные цепи для защиты входа от чрезмерного напряжения — эти цепи могут значительно ухудшить входное сопротивление. Поэтому некоторые ОУ выпускаются в защищенной и незащищенной версии.
- Ненулевое . Данное ограничение не имеет большого значения, так как наличие обратной связи эффективно уменьшает выходное сопротивление каскада на ОУ (практически до сколь угодно малых значений).
- Ненулевое напряжение смещения: требование о равенстве входных напряжений в активном состоянии для реальных ОУ выполняется не совсем точно — ОУ стремится поддерживать между своими входами не точно ноль вольт, а некоторое небольшое напряжение (напряжение смещения). Другими словами, реальный ОУ ведет себя как идеальный ОУ, у которого внутри последовательно с одним из входов включен генератор напряжения с ЭДС Uсм. Напряжение смещения — очень важный параметр, он ограничивает точность ОУ, например, при сравнении двух напряжений. Типичные значения Uсм составляют 10-3 ÷ 10-6 В.
- Ненулевое усиление синфазного сигнала. Идеальный ОУ усиливает только разницу входных напряжений, сами же напряжения значения не имеют. В реальных ОУ значение входного синфазного напряжения оказывает некоторое влияние на выходное напряжение. Данный эффект определяется параметром коэффициент ослабления синфазного сигнала (КОСС, англ. common-mode rejection ratio, CMRR), который показывает, во сколько раз приращение напряжения на выходе меньше, чем вызвавшее его приращение синфазного напряжения на входе ОУ. Типичные значения: 104 ÷ 106.
Параметры по переменному токуправить | править код
- Ограниченная полоса пропускания. Любой усилитель имеет конечную полосу пропускания, но фактор полосы особенно значим для ОУ, поскольку они имеют внутреннюю частотную коррекцию для увеличения запаса по фазе.
- Ненулевая входная ёмкость. Образует паразитный фильтр низких частот.
Нелинейные эффекты:править | править код
- Насыщение — ограничение диапазона возможных значений выходного напряжения. Обычно выходное напряжение не может выйти за пределы напряжения питания. Насыщение имеет место в случае, когда выходное напряжение «должно быть» больше максимального или меньше минимального выходного напряжения. ОУ не может выйти за пределы, и выступающие части выходного сигнала «срезаются» (то есть ограничиваются).
- Ограниченая скорость нарастания. Выходное напряжение ОУ не может измениться мгновенно. Скорость изменения выходного напряжения измеряется в вольтах за микросекунду, типичные значения 1÷100 В/мкс. Параметр обусловлен временем, необходимым для перезаряда внутренних емкостей.
Ограничения, обусловленные питаниемправить | править код
- Ограниченный выходной ток. Большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока — типичное значение максимального тока 25 мА. Защита предотвращает перегрев и выход ОУ из строя.
- Ограниченная выходная мощность. Большинство ОУ предназначено для применений, не требовательных к мощности: сопротивление нагрузки не должно быть менее 2 кОм.
Что такое четырехполюсник
В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.
Пассивный четырехполюсник
Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).
В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.
Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.
Активный четырехполюсник
А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.
То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.
Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.
Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.
В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.
В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .
Хвалим, критикуем, корректируем
Умение общаться с подчиненными и давать обратную связь уже традиционно относят к основным навыкам профессионального менеджера. Любой руководитель должен быть способен в нужный момент поговорить с сотрудником. И вроде бы, чего уж проще — вызвал и поговорил. Конкретно и по делу. Похвалил. Покритиковал. Поставил задачи. Нет проблем!
“Он вызвал меня и сказал, что мне начислена премия. И передал письмо, в котором говорилось о том, что премия за отличное выполнение проекта. Деньги были очень кстати, но мне хотелось услышать слова благодарности от моего начальника”.
“У нас каждое утро начинается с крика. Распахивается дверь, и начальник из своего кабинета начинает по очереди всем устраивать “разнос”. Раньше переживали, а теперь привыкли. На работу это никак не влияет. Он отведет душу, и мы дальше работаем”.
“Она вообще не интересуется, как у меня идёт работа. Даёт задания, в основном по электронной почте. Я выполняю. Такое ощущение, что работаю в другом городе, хотя ее кабинет в десяти метрах от моего стола”.
Виды обратной связи
Если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается больше амплитуды внешнего сигнала, то данная цепь ОС называется положительной обратной связью (ПОС), а в случае если сумма амплитуд внешнего сигнала и сигнала цепи обратной связи оказывается меньше амплитуды внешнего сигнала, то такая ОС называется отрицательной обратной связью (ООС).
Путём введения ОС удаётся достаточно сильно изменить процесс работы и свойства усилителя, которые определяются как свойством усилителя, так и свойством цепи ОС. На свойства цепи ОС существенное влияние оказывает её вид, то есть принцип её действия, зависящий в общем случае от полярности и фазы напряжения ОС, а также способа её соединения с входными и выходными цепями усилителя.
Различают четыре вида обратных связей:
- параллельная обратная связь по напряжению.
- параллельная обратная связь по току.
- последовательная обратная связь по напряжению.
- последовательная обратная связь по току.
Кроме того существует также смешанная обратная связь, но из-за сложности в изготовлении и настройке данный вид обратной связи большого распространения не получил.
Рассмотрим, как образуется каждый вид обратной связи.
Обратная связь. Положительная и отрицательная обратная связь.
Как Вы знаете или не знаете или не помните, любая система может быть представлена, как черный ящик. Концепция обратной связи предполагает, что изменение Выходного сигнала одного черного ящика через некоторую передаточную функцию второго черного ящика передается на Вход первого.
Как один из вариантов реализации — весь Выходной сигнал первого черного ящика подается (добавляется, вычитается, мультплицирует, делит и т.д.) на его же Вход — заметьте, что «весь сигнал» это тоже всего лишь изменение сигнала по отношению к нулевому уровню выхода.
Сперва рассмотрим Отрицательную Обратную Связь (ООС). Почему? Да потому, что это и есть основной метод регулирования заданного параметра. Под ООС понимают такую обратную связь, при которой изменение выходного сигнала передается на вход черного ящика таким образом, чтобы подавить (компенсировать) это изменение. Т.е. отрицательная обратная связь «держит» выходной параметр неизменным. Очень важными параметрами обратной связи, даже при правильном выборе передаточной функции являются
- скорость реакции на изменение выходного сигнала (временная задержка) — если этот параметр выбран неверно, то либо система входит в режим автоколебаний (слишком маленькое время реакции), либо регулирование не успевает за процессом (слишком большое время реакции).
- чувствительность системы к изменению выходного сигнала — если этот параметр выбран неверно, то либо система входит в режим автоколебаний (слишком высокая чувствительность), либо регулирование не успевает за процессом (слишком низкая чувствительность).
- предумотренная возможность изменения параметров передаточной функции для задач в которых требуется еще и внешнее регулирование уровня выходного сигнала ( управление выходом) ! заметим, что если мы хотим изменить уровень поддержки постоянного выходного сигнала (регулировать выход системы извне), то задачи поддержания стабильности нового сигнала никуда не исчезают!
- Пример ООС 1: Черный ящик «Налоговая инспекция». Время сдачи отчета. Охранник осуществляет отрицательную обратную связь выходного параметра «количество посетителей внутри» с парметром «входящие посетители» открывая и закрывая дверь и ругаясь.
- Пример ООС 2: В системе водоснабжения города постоянным параметром для регулирования с помощью ООС является давление. При повышенном водоразборе (утром, вечером) давление падает и при этом система автоматизции повышает производительность насосной станции. Когда водоразбор падет (ночь) — давление повышается и производительность насосов принудительно снижается.
Посмотрим теперь на Положительную Обратную Связь (ПОС). Под ПОС понимают такую обратную связь, при которой изменение выходного сигнала передается на вход черного ящика таким образом, чтобы усилить (увеличить) это изменение. Т.е. положительная обратная связь «разгоняет» изменение выходного параметра. Из практических общеинженерных применений ПОС следует выделить использование выходного сигнала с временной задержкой для возбуждения системы. Огромное количество электротехнических решений (усилители, автоколебательные системы, генераторы сигналов) базируется именно на явлении ПОС.
- Пример ПОС 1: Фонящий микрофон (микрофон установленный недалеко от колонок) сигнал колонок>микрофон>усилитель>сигнал колонок>микрофон.
- Пример ПОС 2: Устранение «дребезга контактов» или «влияния шумов срабатывания». Система после срабатывания на некоторое время выключается, но сигнал срабатывания после предустановленной задержки взводит систему опять в рабочее состояние.
! заметим, что и пошаговое регулирование и непрерывное регулирование прекрасно вписываются в концепцию обратной связи!
Влияние ОС на выходное сопротивление усилителя
Выходное сопротивление усилительного каскада является сопротивлением переменному току между его выходными зажимами, с которых снимается усиленное напряжение сигнала, поступающего на вход усилительного каскада.
Выходное сопротивление также как и входное сопротивление усилителя с обратной связью определяется лишь типом применённой обратной связи (ОС по току или ОС по напряжению). Оно может быть найдено способом аналогичным нахождению входного сопротивления усилительных каскадов с ОС, поэтому приведу только окончательные формулы для различных видов ОС.
Выходное сопротивление при обратной связи по напряжению:
для ПОС
для ООС
Таким образом, применение ПОС по напряжению приводит к возрастанию выходного сопротивления, а при значении βК ≥ 1 переходит к «отрицательному» сопротивлению и превращению в генератор. В случае применения ООС по напряжению происходит уменьшение выходного сопротивления, что положительно сказывается на свойствах усилительного каскада.
Выходное сопротивление при обратной связи по току:
для ПОС (без учёта RH (сопротивления нагрузки), которое подключается параллельно RBbIX.OC)
для ООС (без учёта RH (сопротивления нагрузки), которое подключается параллельно RBbIX.OC)
Также как и ОС по напряжению, ОС по току при ПОС вначале увеличивает выходное сопротивление, затем превращается в «отрицательное» сопротивление с генерированием колебаний. А ООС по току уменьшает выходное сопротивление.
Среди всех видов обратной связи лучшее применение находит последовательная обратная связь по напряжению, так как такая связь увеличивает входное сопротивление и приводит к уменьшению выходного сопротивления, что позволяет лучше согласовать параметры усилителя с предыдущими и последующими каскадами и нагрузкой усилителя.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.