Переходное сопротивление контакта. зависимость переходного сопротивления от состояния контактных поверхностей и температуры

Содержание

Документирование результатов измерений

По итогам проведенных работ подготавливается отдельный документ, в котором фиксируются все необходимые данные.

В бытовых однофазных цепях вполне достаточно будет провести три замера. В последних строчках заполняемого протокола обязательно должна присутствовать фраза о соответствии полученных результатов требованиям ПУЭ.

Кроме того, в них вносятся следующие данные:

  1. Дата и объем проведенных обследований.
  2. Сведения о составе рабочей бригады (из обслуживающего персонала).
  3. Используемые при проверке измерительные приборы.
  4. Схема их подключения, окружающая температура, а также условия проведения работ.

По завершении протоколирования измерений журнал с соответствующими записями убирается в надежное место, где он хранится до следующих испытаний. Сохраненные таким образом акты замеров в любой момент могут потребоваться для того, чтобы в аварийных ситуациях служить доказательством исправности поврежденного изделия.

Готовый протокол обязательно заверяется подписью производителя работ и проверяющего, назначенного из состава оперативного персонала. Для оформления актов замеров допускается использовать обычный блокнот, но более законным и надежным способом считается заполнение специального бланка (его образец приводится ниже).

Образец протокола измерения сопротивления изоляции

Заранее подготовленная форма протокола содержит пункты, в которых указываются:

  1. Порядок проведения измерительных операций.
  2. Применяемые при этом средства измерения.
  3. Основные нормативы по контролируемому параметру.

Кроме того, форма актов измерения электропроводок содержит готовые таблицы, подготовленные к заполнению. В таком виде документ составляется на компьютере всего лишь один раз, после чего он распечатывается на принтере в нескольких экземплярах. Такой подход позволяет сэкономит время на подготовку документации и придает актам замеров законченный, официальный вид.

Измерение – переходное сопротивление

Измерение переходных сопротивлений является вспомогательным и необходимо для контроля состояния контактов при испытаниях на устойчивость к токам короткого замыкания и на механическую износоустойчивость.

Измерение переходных сопротивлений контактных соединений производится микроомметрами или контактомерами, т.е. специальными приборами для измерения малых сопротивлений. Эти приборы имеют специальные контактные наконечники щупов, которые прижимаются к токопроводящим элементам с обеих сторон проверяемого контактного соединения. Со стороны проверяемого сопротивления присоединяются потенциальные наконечники, с внешней стороны – токовые наконечники щупов. Обозначения потенциальных ( П) и токовых ( Т) наконечников нанесены на рукоятки щупов. Оценка качества контактного соединения производится сопоставлением значения сопротивления участка с контактным соединением со значением сопротивления токоведущего элемента на участке, длина которого равна участку с проверяемым контактным соединением.

Измерение переходного сопротивления рельсового пути производится прибором МС-08. Перед началом измерений исследуемый участок рельсового пути электрически изолируют от остальной трассы путем снятия средних шинок путевых дросселей.

Измерение переходного сопротивления рельсового пути выполняется прибором МС-08. Перед началом измерений исследуемый участок пути электрически изолируется от остальной трассы путем снятия средних шинок путевых дросселей. В качестве заземляющего электрода могут быть использованы: в туннеле с чугунной отделкой – любая конструкция, имеющая металлическую связь с тюбингом; в туннеле с железобетонной отделкой – металлическая шина, соединяющая кабельные кронштейны.

Измерение переходных сопротивлений контактов переключающих устройств производится при постоянном токе одним из следующих методов ( см. ГОСТ 8008 – 63, пп.

Внешний вид моста Р316.

Измерение переходных сопротивлений паек якорных обмоток машин постоянного тока и аналогичные ему измерения удобно производить с помощью микроомметров.

Измерением переходного сопротивления контактов выключателя проверяют его надежность, так как повышенное переходное сопротивление может привести к перегреву контактов, их оплавлению и выходу выключателя из строя. Величина переходных сопротивлений контактов выключателей зависит от типа выключателя.

Измерением переходного сопротивления контактов выключателя проверяют его надежность, так как повышенное переходное сопротивление может привести к перегреву контактов, их оплавлению и выходу выключателя из строя.

Производится измерение переходного сопротивления контактов каждой фазы. Если при текущем ремонте сопротивление контактов превышает норму и возросло против значения, измеренного при капитальном ремонте, более чем в два раза, контакты должны быть улучшены.

Для измерения переходного сопротивления контактов может быть использован определенный искробезопасный омметр М-372 И. На рис. 58 показан омметр, переделка которого осуществлена Северодонецкнм химическим комбинатом по рекомендации института Гппронисэлектрошахт на базе серийно выпускаемого омметра М-372. Он состоит из собственного прибора, в корпусе которого расположен источник питания ( аккумулятор МЦ-4к), и соединительных проводов с зажимами на конце.

Схема измерения сопротивления контактов выключателя ( метод падения напря -, жения.

При измерении переходного сопротивления с помощью моста ( рис. 126) величина переходного сопротивления определяется непосредственным отсчетом по шкале моста.

Согласно Нормам измерение переходного сопротивления контактов сборных и соединительных шин может производиться лишь в установках с номинальным током 1 000 а и больше и выборочно у 5 – 10 % контактов.

Пример определения коэффициента р по результатам измерения переходного сопротивления на действующем трубопроводе.

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Пленочные конденсаторы — применение в энергетике
      9 апреля 2021
    • Поворотное устройство для солнечного коллектора
      15 марта 2021
    • Выбор подпрограммы с помощью кнопки
      11 марта 2021
    • Керамические конденсаторы SMD, параметры
      4 марта 2021
    • Программа для проверки выходных буферов PIC16F676 и PIC16F628A
      21 февраля 2021
    • Зарядное устройство для автомобильных аккумуляторов — 242 124 просмотров
    • Стабилизатор тока на LM317 — 176 993 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 128 047 просмотров
    • Реверсирование электродвигателей — 104 704 просмотров
    • Зарядное для аккумуляторов шуруповерта — 101 144 просмотров
    • Карта сайта — 101 064 просмотров
    • Зарядное для шуруповерта — 89 942 просмотров
    • Самодельный сварочный аппарат — 89 701 просмотров
    • Схема транзистора КТ827 — 85 770 просмотров
    • Регулируемый стабилизатор тока — 85 505 просмотров
    • DC-DC (5)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (35)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (17)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (41)
    • Импульсные блоки питания (2)
    • Индикаторы (6)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (6)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (19)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (16)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (14)
  • Архивы
    Выберите месяц Апрель 2021  (1) Март 2021  (3) Февраль 2021  (2) Январь 2021  (1) Декабрь 2020  (1) Ноябрь 2020  (1) Октябрь 2020  (1) Сентябрь 2020  (2) Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Что это такое?

Сопротивление, возникающее в зоне соприкосновения контактных поверхностей, при преодолении током точек касания, носит название переходного сопротивления контактов. Другими словами – это скачкообразное увеличение активного сопротивления в результате прохождения тока через контактное пятно. Математически такое явления можно выразить как отношение падения напряжения на контактах к протекающему через них току: ΔU/I

Как видно из формулы данная величина обратно пропорциональна силе контактного нажатия: Rn = ε/F, где ε – коэффициент, зависящий от физических свойств материала и чистоты обработки поверхности. Эту зависимость можно продемонстрировать на графике (рис. 1).


Рис. 1. График зависимости от приложенной силы нажатия

Нагревание контактных поверхностей – одна из причин быстрого их износа. Поэтому наиболее качественным соединением считается такое, для которого сопротивление контактного перехода является самым низким. В идеале оно должно равняться нулю. Но в силу ряда причин достичь такого значения на практике невозможно.

Причины возникновения

Для сплошного проводника справедлива формула: R = ρ * ( l / S ), где ρ – удельное сопротивление, l – длина, S – сечение проводника. Казалось бы, решение очень простое – надо увеличить площадь контактных площадок в конструкции электрического аппарата. К сожалению, такое усовершенствование не решает задачи кардинально. И дело даже не в том, что применять закон Ома к плоскостным контактам следует с учётом площади прикосновения поверхностей. Оказывается, что увеличение контактной площадки не сильно увеличивает площадь контактного пятна.

Если посмотреть под микроскопом на поверхность плоской контактной площадки, то можно заметить неровности (рис. 2). Касание контактов происходит лишь в некоторых точках. Даже тщательная шлифовка мало помогает. Дело в том, что в результате замыкания и размыкания контактов образуется искра (электрическая дуга), которая увеличивает неровности контактных поверхностей.


Рис. 2. Структура плоских контактных площадок

Обратите внимание на то, как увеличивается контактное пятно под действием силы нажатия (рисунок справа). Это объясняет причину зависимости сопротивления контактного перехода от нажатия, (график такой зависимости представлен на рисунке 1)

От чего зависит переходное сопротивление контактов?

Мы выяснили, что от площадей соприкасаемых поверхностей мало что зависит. На нагрев участка механического соединения влияют и другие явления. Например, окисление меди приводит к повышению температуры нагрева на скрутках соединительных проводов. Аналогичный процесс происходит также при соединении алюминиевых проводников.

В результате окисления проводников на их поверхностях образуется тонкая оксидная плёнка. С одной стороны, наличия пленок препятствует проникновению кислорода вглубь металла, предотвращая дальнейшее его разрушение, но с другой стороны они являются ещё одной причиной роста переходных сопротивлений.

Когда медь окисляется, то на поверхности контактной площадки образуется устойчивая плёнка. А это всегда приводит к увеличению сопротивляемости перехода. Устранить дефект можно путём протирания контактов спиртом. Регулярная процедура чистки помогает содержать коммутационные устройства в актуальном состоянии.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Как проверить переменное сопротивление тестером

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

https://youtube.com/watch?v=Yq92LVnla08

Как уменьшить величину переходного сопротивления

Для обеспечения нормальной работы электрооборудования, недопущения аварийных ситуаций существуют рекомендации по применению способов реализации контактных соединений.

Механические

Этот способ основан на сжатии соприкасаемых поверхностей проводников для увеличения пятна контакта. Зависимость переходного сопротивления (Rn) от усилия  сжатия F (давления) показана на графике.

Из графика следует, что чем больше усилие сжатия, тем меньше переходное контактное сопротивление. Однако целесообразность в повышении усилия сжатия имеет ограничения. При достижении определенной величины оно уже перестает влиять на изменение сопротивления. Следует учитывать прочностные характеристики сжимаемых контактов при выборе оптимального давления. Для примера рассмотрим несколько наиболее часто применяемых механических способов соединения проводников.

Опрессовка. Этот способ заключается в совместном деформировании опрессовочной гильзы и соединяемых контактных проводников. Основными инструментами для опрессовки служат пресс-клещи и переносные гидропрессы. Гильза для повышения электрических характеристик соединения выполняется из специальных материалов (электротехническая медь, электротехнический алюминий).
Зажимы с помощью резьбовых соединений. В качестве рабочего материала для таких соединений применяются клеммные колодки. Они состоят из пластикового корпуса, в который вставлены с обеих сторон латунные трубки с резьбой с предварительно накрученными винтиками. Для соединения в отверстия клеммы вставляются соединяемые проводники и закручиванием винтов с определенным усилием крепятся в ней.
Пружинные зажимы. Отличаются разнообразием конструкций, но в основе всех заложена пружина, обеспечивающая своей силой упругости давление на контактируемые поверхности проводников

Здесь важно использовать пружинные зажимы от производителей. Некачественные пружины со временем могут потерять упругость и ослабить контакт. На изображении зажим при помощи листовой пружины от немецкого производителя WAGO.

На изображении зажим при помощи листовой пружины от немецкого производителя WAGO.

Соединение контактов с помощью сварки

Эта технология позволяет создать надежный контакт с минимальным превышением переходного сопротивления. Применяется в электромонтажных работах, где в качестве расходника используется угольный электрод. Малый сварочный ток дает относительно слабую электрическую дугу и практически нулевое разбрызгивание металла дают электромонтажнику возможность работы в защитных очках вместо маски.

Сварку следует производить на короткой дуге, при увеличенной внешняя воздушная среда оказывает отрицательное воздействие на зону сварки в виде появления на ней пор, что повышает величину переходного сопротивления.

Пайка контактов

Перед пайкой важно правильно выполнить скрутку соединяемых проводников. Самостоятельная эксплуатация контактов выполненных в виде скруток запрещено  ПУЭ («Правилами устройства электроустановок»). Сам процесс не требует особых навыков в отличие от сварки, где надо уметь держать короткую дугу

Так как материал, с помощью которого производят пайку (свинцово-оловянный и ему подобные) не обладает высокими прочностными характеристиками, то эта технология используется для соединения малых сечений (кабеля контрольные, управления, интернет кабеля)

Сам процесс не требует особых навыков в отличие от сварки, где надо уметь держать короткую дугу. Так как материал, с помощью которого производят пайку (свинцово-оловянный и ему подобные) не обладает высокими прочностными характеристиками, то эта технология используется для соединения малых сечений (кабеля контрольные, управления, интернет кабеля).

Борьба с окислениями поверхностей контактов повышает эффективность передачи тока через соединение. Следует не допускать длительный период работы контактов из меди или алюминия, необходимо периодически выполнять чистку поверхностей спиртом.

Покрытие контактов серебром, платиной, лужение, никелирование, цинкование добавляют им коррозионную стойкость. При этом указанное покрытие практически не влияет на электрические характеристики соединения.

Факторы, влияющие на величину переходного сопротивления

Удельное сопротивление

Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:

  • точечные – соединение происходит в точке;
  • линейные – соприкасаются по линии;
  • плоскостные – контакт по плоскости.

Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.

Площадь прикосновения контактов можно подсчитать по формуле:

Sпр = F/σ,

где:

  • F – сила сжатия контактов;
  • σ – временное сопротивление материала контактов сжатию.

Существуют разные способы соединения:

  • механические (скрутки, болтовые зажимы, опрессовка);
  • сварка;
  • пайка.

Величина переходного сопротивления определяется по формуле:

Rп = knx/(0,102*Fk)n,

где:

  • knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
  • Fk – сила, с которой сжимаются контакты;
  • n – показатель степени, показывающий число точек соприкосновения.

Показатель степени для разных видов контактов:

  • для точечного – n = 0,5;
  • для линейного – n = 0,5-0,7;
  • для плоскостного (поверхностного) – n = 0,7-1.

Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.

Факторы, влияющие на Rп

Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления. Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением

Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.

К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.

Результат нагрева места соединения

Испытания сопротивления заземления

Замер сопротивления заземления

Существуют приемо-сдаточные и эксплуатационные испытания.

Первые на основании ПУЭ проводятся после окончания работ по установке защитного заземления. Эксплуатационным испытаниям, регламентируемым ПТЭЭП, подвергаются электроустановки, которые сданы в эксплуатацию. При данном виде испытаний, обследования проводятся на протяжении всего периода работы защитного устройства.

В соответствии с правилами измерение сопротивления заземляющей конструкции должно осуществляться один раз в шесть лет. Если есть подозрение на повреждение заземляющего устройства, такое испытание проводится чаще.

Замеры переходного сопротивления проходят не менее одного раза в год.

Кроме измерения сопротивления также при испытаниях должен происходить тщательный осмотр всех видимых частей заземляющего устройства.

Раз в 12 лет необходимо проводить детальный осмотр с частичным вскрытием грунта в местах наиболее вероятного появления коррозии. Если грунт в данном районе ведет себя агрессивно, то количество таких осмотров увеличивается.

Также один раз в шесть лет проводится проверка состояния предохранителей.

Если в результате проверки было выявлено более 50% повреждений, такую защитную конструкцию следует заменить в обязательном порядке.

https://youtube.com/watch?v=GUKqUYtYlhQ

Варианты получения хорошего портативного звука

Если же идея получения качественного звука со смартфона вас по-прежнему не покидает, готовьтесь потратить свои кровные на приобретение внешнего портативного усилителя.

Высокоомные наушники действительно звучат лучше своих низкоомных собратьев и вот по какой причине. За счет высокого уровня сопротивления наушников, усилитель отдает меньше тока (при более высоком напряжении), а это предотвращает волновые искажения на его каскаде. Более того, наушники с большим сопротивлением имеют более равномерные амплитудно-частотные характеристики (следствие увеличенного количества витков на магнитной подушке динамика), а при условии низкого сопротивления и со стороны усилителя, АЧХ могут оставаться практически неизменными.

Еще одной альтернативой получения качественного звука является использование так называемых однодрайверных арматурных наушников.

Внешне они ничем не отличаются от традиционных вкладышей, но имеют поднятый диапазон средних и высоких частот, что обеспечивает «чистое и прозрачное» звучание.

Наконец, раз и навсегда решить проблему терзаний перед выбором наушников может покупка плеера с высоким уровнем выходного напряжения.

В отличие от смартфонов и недорогих плееров, в Hidisz установлен мощный предусилитель. Преимущество на лицо: 2,2 В против 100-150 мВ у смартфона. Использование подобных плееров открывает перед меломаном широкий ассортимент высокоомных наушников с настоящим качественным звучанием.

Перед покупкой любых наушников, а особенно высокоомных моделей, обязательно определите максимально возможный уровень громкости, проигрывая музыку на том устройстве, с которым планируете дальнейшую эксплуатацию. Акцентируя внимания на числовых характеристиках наушников, не забывайте, что слух и любая аудиоаппаратура – вещи строго индивидуальные. Наушники с, казалось бы, средними значениями сопротивления и частотного диапазона, зачастую могут дать фору самым технологически совершенным экземплярам.

P.S. Выражаем спасибо компании Bowers & Wilkins за помощь и профессиональную консультацию в подготовке материала.


iPhones.ru

Данная статья будет посвящена разбору полетов широкого ассортимента наушников и одному из главных показателей – их импедансу. 16, 32 или 320 Ом – какое сопротивление выбрать и на что оно влияет? Встретить на улице человека с наушниками можно повсеместно. Кто-то привык к компактным вкладышам или наушникам вставного типа. Для кого-то эталоном хорошего звука стали стильные…

Возможно, вам также будет интересно

Артем Рогачев Введение Как правило, современные системы пайки имеют возможности как для подключения термопар, так и ПО для отладки термопрофиля. Но зачастую это всего лишь 2 выносные термопары, которые вы можете закрепить на двух максимально важных участках ПП. Для опытного технолога уже не секрет, что даже разная номенклатура компонентов на одном и том же размере

Аркадий Медведев Светлана Шкундина Введение Иммерсионные процессы – это контактное восстановление металлов из их растворов на электроотрицательных поверхностях. Происходит реакция замещения металла основы на металл из раствора. Название этого процесса произошло от английского слова immertion, что означает «погружение». Действительно, для этого процесса достаточно погрузить деталь в раствор из менее электроотрицательного металла, чтобы начать процесс иммерсионного

Непрерывно растущая потребность в травлении линии малой ширины является движущей силой для исследований, разработки и создания процессов и оборудования, отвечающих этим требованиям.

Нюансы

Измерение металлосвязи проводится сразу после монтажа, прямо перед пуском и началом эксплуатации, а затем, с периодичностью в 3 года, при проведении плановых испытаний и обслуживания. Вместе с проверкой, а также при смене времени года, когда возможны подтапливания и излишняя влажность, проверяют сопротивление изоляции кабелей и электрических машин.

Проверить качество контакта и измерить его переходное сопротивление с помощью простого бытового мультиметра, типа DT830 и подобных не получится. В области малых сопротивлений они либо не измеряют вообще (до десятых, но не сотых Ома), а одно только сопротивление между щупами у них доходит до 1 Ома, а иногда и превышает. О точности здесь говорить не приходится.

Иногда, чтобы измерить качество контакта, не нужны приборы, так как очевидно его разрушение. В крайних случаях доходит до того, что можно измерить его температуру рукой, если он греется — значит нужна его профилактика и последующие замеры и проверка милиомметром.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как проверяют наличие металлосвязи прибором:

Проверка металлосвязи очень важна для безопасности жизнедеятельности сотрудников предприятия и жильцов дома. Из-за плохого заземления в розетках или его полного отсутствия есть вероятность появление потенциала на корпусе прибора. А когда человек к нему коснется, произойдет либо электротравма, либо непоправимое. Надеемся, предоставленная информация была для вас полезной и интересной!

Рекомендуем также прочитать:

  • Как проверить работоспособность дифавтомата
  • Измерение сопротивления заземления
  • Для чего нужна нулевая шина
  • Как пользоваться мегаомметром

https://youtube.com/watch?v=imwkyAZiXkw

Большое переходное сопротивление

Большое переходное сопротивление образуется вследствие плохого контакта, в частности в местах соединения проводов между собой или с клеммами рубильников.

Схема включения регулировочного реостата. а — неправильно. б — пра.

Большое переходное сопротивление в цепи возбуждения, в результате чего ток в обмотке возбуждения не может достигнуть нужной величины при выведенном сопротивлении регулировочного реостата.

Большое переходное сопротивление между проводами обмотки ЛАТР и угольной щеткой ограничивают ток короткозамкнутого витка.

Принципиальная схема устройства трансформатора С подвижной короткозамкну-той катушкой ( а и схема соединения его обмоток ( б.

Большое переходное сопротивление между проводниками обмотки ЛАТР и угольной щеткой ограничивает ток короткозамкнуто-го витка. Такие автотрансформаторы широко используются в лабораториях.

Большое переходное сопротивление контактов и изменение параметров сопротивления катушек обнаруживается при поверке приборов. Причинами увеличения переходного сопротивления могут быть загрязнение, окисление, износ поверхностей, плохая притирка и слабое под-жатие контактных частей переключающих устройств. Параметры катушек изменяются из-за межвитковых замыканий при пробое или нарушении изоляции.

Ввиду большого переходного сопротивления стыков значительно повышается общее сопротивление рельсовой цепи. Увеличение падения напряжения в рельсах ведет к увеличению потенциала по отношению к земле, что создает благоприятные условия для ответвления токоз в землю. Поэтому для уменьшения сопротивления в местах расположения рельсовых стыков устанавливают дополнительные электропроводящие соединения, так называемые стыковые еоедннения.

При большом переходном сопротивлении сопротивление на зажимах одного из реле при замыкании между двумя фазами может оказаться меньшим, чем при замыкании между тремя фазами, но остается большим, чем при металлическом к.

Если вследствие большого переходного сопротивления в месте повреждения получить ток достаточной величины не удается, то необходимо прожечь место повреждения подачей повышенного напряжения от сварочного или силового трансформатора.

В обычном состоянии проводимость когерера мала вследствие большого переходного сопротивления между отдельными частицами опилок. Но при включении расположенной вблизи индукционной катушки, создающей электромагнитное поле, проводимость когерера резко возрастает. Это объясняется наведением в каждой частице электродвижущей силы, под действием которой между частицами возникают электрические разряды, приводящие как бы к спеканию опилок.

Наибольшая эффективность применения изолирующих фланцев достигается при большом переходном сопротивлении на защищаемом трубопроводе.

Контрольная лампа Проверка корпуса агрегата на.

Контрольная лампа позволяет обнаружить замыкание на корпус при большом переходном сопротивлении, но ее показания значительно менее точны, чем омметра.

Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и сильно затрудняет пайку алюминия обычными способами. Для пайки алюминия применяют специальные пасты — припои или используют ультразвуковые паяльники.

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

Квантовый предел

Когда проводник имеет пространственные размеры, близкие к , где находится волновой вектор Ферми проводящего материала, закон Ома больше не выполняется. Эти небольшие устройства называются квантовыми точечными контактами . Их проводимость должна быть целым числом, кратным значению , где — элементарный заряд, а — постоянная Планка . Квантовые точечные контакты ведут себя больше как волноводы, чем классические провода повседневной жизни и могут быть описаны формализмом рассеяния Ландауэра . Точечно-контактное туннелирование — важный метод определения характеристик сверхпроводников .
2πkF{\ displaystyle 2 \ pi / k _ {\ text {F}}}kF{\ displaystyle k _ {\ text {F}}}2е2час{\ displaystyle 2e ^ {2} / h}е{\ displaystyle e}час{\ displaystyle h}