Какой металл является наилучшим проводником?
Какой металл является наилучшим проводником?
Самый лучший проводник тепла и электричества является также и самым отражающим из всех химических элементов. Главный недостаток серебра в том, что оно слишком дорогое. Единственная причина, почему в нашем электрооборудовании мы используем не серебряные, а медные провода, заключается в том, что медь – второй по проводимости элемент – намного дешевле.
Помимо украшений, серебро главным образом используется в фотопромышленности, батарейках с длительным сроком эксплуатации и солнечных панелях.
Серебро обладает любопытнейшей способностью стерилизовать воду. Причем требуется буквально крошечное количество – десять частей на миллиард. Сей удивительный факт был известен еще с древнейших времен: так, в V веке до н. э. Геродот писал о персидском царе Кире, который постоянно возил с собой личный запас воды, взятой из особого источника, вскипяченной и запечатанной в серебряные сосуды.
Нужно ли менять алюминиевую проводку на медную
Если старая алюминиевая проводка справляется с текущими нагрузками, то можно и не менять. Ревизия электросети в квартире — дело нелегкое и пыльное. Придется сверлить, штукатурить и, по сути, сделать капитальный ремонт. Эти мероприятия потратят кучу времени и денег.
Если же проводка не справляется, то она подлежит замене. Делать это следует как можно скорее. Признаки того, что провод не выдерживает нагрузку, таковы:
- перегрев свыше 40-50 °C (рука почти не терпит);
- запах гари;
- деформация изоляции из-за оплавления;
- потемнение кабелей;
- трещины на изоляции.
Дополнительная информация. Трещина может быть и незаметной. Если стена или окружающий воздух отсыреют, то через поврежденную изоляцию возможно протекание токов утечки. Они будут приводить к постоянным ложным срабатываниям противопожарного УЗО.
Другое дело, если вы делаете ремонт. В таком случае желательно заодно заменить и проводку на более мощную медную. Того же рекомендует и ПУЭ.
Медные кабели более пригодны для передачи электричества, чем алюминиевые. Об этом говорят их технические параметры и ПУЭ. Поэтому ответственную проводку выполняют из меди. Неответственные и временные электрические сети прокладываются алюминием.
Источник
Физические свойства металлов
Свойства металлов полностью зависят от их внутреннего строения. Твердое состояние металлов представляет собой кристаллическую решетку пространственного типа, где кристаллы расположены упорядоченно. Как уже было отмечено, между узлами кристаллической решетки наблюдается движение свободных электронов.
Абсолютное значение их отрицательных зарядов совпадает с положительным зарядом всех ионов, расположенных в узлах кристаллической решетки. Когда через проводник пропускается электрический ток, ионы остаются на своем месте. Происходит перемещение свободных электронов, одинаковых в любом веществе.
Иные свойства
Сегодня алюминия производится практически в 2 раза больше, чем меди. А в сравнении со всеми добываемыми металлами, он уступает только стали. Это подтверждает, что с каждым годом электротехническая отрасль наращивает обороты его использования. Объясняется это целым рядом причин, которые мы рассмотрим далее.
Электрические показатели алюминия
Согласно «Международному стандарту по отожженной меди» (IACS), последней присвоен показатель в 100% проводимости. В соответствии с вышеперечисленной информацией, алюминий проводит электричество лишь со значением в 61% в эквиваленте общепринятому стандарту.
Таким образом, равное процентное соотношение будет достигнуто только при больших поперечных сечениях. В виду того, что медь существенно тяжелее алюминия, такой «увеличенный» в массе проводник всё равно окажется легче медного.
Сравнительная плотность алюминия и медиИсточник aluminium-guide.com
Этот факт доказан путём сложных математических расчётов, результат которых показывает, что 1 кг. алюминия обеспечивает равную скорость проводимости, что 2 кг. меди. Потому, если этого не требуют определённые технические условия к размеру проводников, медь заменяется алюминием.
Показатель прочности
При условии одинакового сечения медные жилы прочнее алюминиевых. Хотя, этот показатель легко увеличить за счёт легирования или термомеханической обработки, либо увеличить сечение.
Таблица отображает, что алюминий в 2 раза слабее на разрывИсточник aluminium-guide.com
Значения, приведённые в таблице, показывают, что алюминий проводит ток, но уступает меди в показателе «на разрыв». Тем не менее, он способен выдерживать собственный вес и не так перегружает опоры ВЛЭ, как медный.
Помимо этого, прессование алюминия подразумевает получение поперечных сечений сложных форм, чего нельзя получить из стали. Исходя из таких объективных причин новые элементы могут быть сконструированы так, что они окажутся наиболее эффективными в сравнении с допустимыми аналогами из других материалов.
Стойкость к коррозии
Алюминий не требует дополнительного окрашивания или покрытия цинком с целью защиты от коррозии. Естественное покрытие оксида предохраняет металл от последующего контакта с кислородом в воздухе и не допускает его дальнейшего окисления.
Интересно! При механическом повреждении защитного оксидного слоя, он мгновенно восстанавливается естественным путём
Срок службы
Продолжительность эксплуатации зависит от целого ряда условий. В первую очередь это температура и влажность. Хотя официально и озвучиваются цифры в 30 лет для меди и 15 для алюминия, на практике кабеля «отрабатывают» гораздо больше. В качестве примера можно привести дома сталинской или хрущёвской постройки. В некоторых из них до сих пор сохранилась «родная» электропроводка. Однако официальная информация озвучивается именно такими сроками.
Электропроводка, которая уже становилась причиной возгоранияИсточник мособлжилсервис.рф
Типы электрических проводников
Существуют разные категории электрических проводников, и, в свою очередь, в каждую категорию входят материалы или среды с наивысшей электропроводностью.
По своему качеству лучшие электрические проводники — это твердые металлы, среди которых выделяются медь, золото, серебро, алюминий, железо и некоторые сплавы.
Однако есть другие типы материалов или растворов, которые обладают хорошими свойствами электропроводности, например графит или солевые растворы.
В зависимости от способа проведения электропроводности можно выделить три типа материалов или проводящих сред, которые подробно описаны ниже:
Откуда берётся ток
Следует отметить, что электрический ток может образоваться не только в металлическом проводнике, но и в других веществах. Например, атмосферная энергия появляется в дождевых облаках, но использовать её не представляется возможным. Для получения электричества, применяемого в хозяйственных нуждах, катушки медных генераторных установок, подходят идеально.
Электрический ток в металлах создаётся упорядоченным движением электронов. Термин «Электричество» впервые был введён Уильямом Гилбертом в XVI веке, но естествоиспытатель ограничился только получением электрических разрядов статического электричества. Два столетия спустя, Майкл Фарадей уже создал действующую модель динамо-машины, появление на свет которой обязано именно эффекту образования электричества в металлах.
Учёный усовершенствовал ранее известный физический опыт, при котором ток в металлах создавался движением магнитного поля вокруг статичного металлического объекта. Первый генератор представлял собой конструкцию, состоящую из вращающего постоянного магнита и медной катушки. Такая машина позволяла получить относительно небольшое напряжение в проводнике. В то время доподлинно ещё не было известно какими частицами создаётся ток в металлах. Только в 1913 году учёным удалось доказать электронную природу этого явления.
Для получения точных результатов учёным пришлось создавать специальные машины, благодаря применению которых и удалось определить причину возникновения тока. Если кратко изложить суть экспериментов, проведённых с целью доказать электронную природу появления тока, то получится конспект следующего содержания:
- Необходимо подготовить катушку, которая может вращаться вокруг своей оси.
- Поставить изделие на твёрдую поверхность, например, на пол.
- Выход проводников этой электрической машины подключить к гальванометру.
- Раскрутить катушку (скорость вращения должна быть значительной).
- Резко затормозить устройство.
Что такое клей, проводящий ток
Клей – это вязкое вещество, которое используется для соединения разнообразных материалов. Существует очень много видов клеев, каждый из них имеет свои особенности и свойства. Среди самых популярных можно выделить канцелярский (ПВХ для бумаг), линолеумный (для напольного покрытия), токопроводящий (для различных электрических схем и механизмов).
Фото – Токопроводящий клей
Токопроводящий двухкомпонентный клей должен иметь следующие особенности:
- Быстро сохнуть, это необходимо для скорости работы;
- Иметь вязку консистенцию, чтобы части схемы, которые не нужно клеить, не пострадали в процессе обработки;
- Иметь высокие сцепляемые показатели и сопротивление;
- Если Вы хотите использовать состав для пайки, то клей нужно подобрать термостойкий;
- Быть безопасным для окружающей среды и рабочих.
Это вещество необходимо для ремонта электрических схем (клавиатуры, бытовой электроники), сооружения различных механизмов обогрева, напольных покрытий (теплого пола, плитки, стекла) и т.д.
Фото – Эласт
Купить токопроводящий клей можно без проблем в любом строительном или электротехническом магазине, средняя цена от 100 рублей за 25 грамм. При этом, учитывая расход, мы видим следующую картину:
- Для ПВХ-покрытий расход равняется приблизительно 250 грамм на квадратный метр;
- Не ПВХ (текстиль, металл) – 400 грамм.
Значительно дешевле приготовить токопроводящий клей самому, тем более что составляющие можно купить в любом радиотехническом магазине. Рассмотрим самые популярные рецепты.
Удельное электрическое сопротивление стали
Многие в курсе, что заземление это соединение корпусов приборов и других железок со специальной конструкцией , вкопанной в грунт. Оно призвано замкнуть опасное напряжение на ноль подстанции и не дать ему добраться до вашего тела. Но как именно оно это делает? Конечно, земля это не изолятор — в ней есть жидкость и растворы разных веществ, способных проводить ток. Но расстояние от места заземления до, собственно, подстанции иногда измеряется десятками километров — как ток может дойти так далеко по такому плохому проводнику? Читайте дальше — мы всё вам расскажем! Главный фактор , который обеспечивает работоспособность заземления — бесконечно большое сечение грунта. Представьте себе плохой проводник, например графит. Если сравнить его с медным проводником той же толщины, он проводит ток хуже в ! А теперь, мысленно начнём увеличивать сечение графитового проводника.
Интересные факты о золоте
Золото — один из четырех металлов, имеющий оттенок в не окислившемся состоянии. Все остальные металлы белые (желтоватый цвет имеют золото и цезий,
медь — красноватая и в сплавах золотистая, осмий имеет голубой отлив).
Плотность золота отличается от плотности вольфрама незначительно (19,32 г/см3} у золота, 19,25 г/см3), этим пользуются для подделки золотых слитков, покрывая вольфрамовый слиток слоем золота. Некоторые теории заговора утверждают, что возможно это одна из причин, почему США никому не дают проверить подлинность их золотого
запаса. И, возможно, поэтому они отдали Германии их золото не сразу.
Можно извлечь золото химически из горы старой электроники, но это не всегда экономически целесообразно и преследуется по закону (ст. 191, 192 УК РФ).
Бестолковость золота требует пояснений. Представим добычу благородных металлов в 2016 году.
Из всей добытой платины 64% потребила промышленность. (Здесь и далее цифры примерные, усредненные по нескольким источникам).
Из всего добытого серебра 68% потребила промышленность.
Из всего добытого палладия 96% потребила промышленность.
Из всего добытого золота всего 10% потребила промышленность. Остальное ушло на украшения и на слитки в сейфах.
Электрический ток и его проводники
Способность проводить электрический ток имеют не только металлы. При некоторых условиях эту способность приобретают тазы и жидкости.
Свойство химического элемента проводить электрический ток или быть диэлектриком (изолятором) зависит от наличия в нем свободных заряженных частиц. В металлах это электрон – частица, вращающаяся вокруг атома. Вместе электроны и атомы составляют молекулу. В молекуле водорода вокруг атома вращается один электрон. У меди их – 39.
Электроны распределяются группами на разном удалении от атомного ядра. Самая дальняя группа электронов у электропроводящих материалов имеет неустойчивую связь с ядром. При появлении электрического поля они приходят в движение и создают электрический ток.
Электрическое поле всегда распространяется со скоростью света. А вот скорость движения электронов очень мала: десятки сантиметров в секунду. Объясняется это столкновениями при движении электронов с элементами кристаллической решетки проводника. Чем больше этих столкновений, тем хуже проводит материал электрический ток.
Удельное сопротивление
Способность лучше или хуже проводить ток определяется удельным сопротивлением — ⍴ (ро). Вот удельные сопротивления некоторых металлов, применяемых в электротехнике.
Металл |
Удельное сопротивление при 20°С, х10-8 Ом∙м |
Серебро |
1,6 |
Медь |
1,7 |
Золото |
2,3 |
Алюминий |
2,8 |
Вольфрам |
5,5 |
Сталь |
12 |
Нихром |
110 |
Удельное сопротивление зависит от температуры. Чем она ниже, тем сопротивление меньше. Объясняется это тем, что с уменьшением температуры электроны меньше совершают хаотичных движений и меньше сталкиваются. При температуре абсолютного нуля (-273˚С) движение прекращается. У большинства материалов при этом способность проводить ток резко исчезает, но у некоторых возникает явление сверхпроводимости, когда удельное сопротивление равно нулю. При этом величина тока в проводнике ничем не ограничивается.
Сопротивление, ток и мощность
Электрическое сопротивление (R) проводника измеряется в Омах и зависит еще и от его геометрических размеров:
S – площадь сечения проводника в м2, l – его длина в метрах. Ток через проводник измеряется в амперах и подчиняется закону Ома для участка цепи:
U – напряжение в вольтах. Мощность, выделяющаяся на проводнике под действием электрического тока, равна:
Теперь возьмем одинаковых размеров проводники из разных материалов и будем пропускать через них один и тот же ток. Как видно из формул, чем больше у проводника удельное сопротивление, тем большая мощность выделится на нем при прохождении электрического тока.
https://youtube.com/watch?v=953z0BDH1Ik
Вот поэтому для одного и того же тока сечение алюминиевого кабеля нужно больше, чем медного. Медный нагреется до температуры, при которой расплавится изоляция, при большем токе.
Применение нихрома для изготовления нагревательных элементов объясняется его высоким удельным сопротивлением и стойкостью к расплавлению. Тугоплавкость и повышенное удельное сопротивление позволили использовать вольфрам для изготовления нитей накала электроламп.
Золото проводит ток чуть лучше алюминия, но применяется в электронике только из-за того, что не образует окислов.
Направление электрического тока
В зависимости от характера движения зарядов электрический ток разделяется на:
- постоянный, когда движение происходит в одном направлении;
- переменный, когда направление движения постоянно меняется.
В наших сетях ток – переменный, частотой 50 Гц. Он 100 раз в секунду изменяет направление движения на противоположное. Переменный ток имеет преимущество перед постоянным: величину напряжения можно изменять при помощи несложных устройств – трансформаторов.
Постоянный ток может быть получен из переменного и наоборот.
И напоследок – интересный казус. В электротехнике принято считать за направление постоянного тока направление движения положительных зарядов – от плюса к минусу. На самом же деле движутся отрицательно заряженные частицы – электроны. Дело в том, что ученые приняли такое направление до открытия электрона, и оно сохранилось до сих пор.
Презентация на тему: ” Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.” — Транскрипт:
2
Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники
3
Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела
4
Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ
5
Проводники и диэлектрики – вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека
6
Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)
7
Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!
8
Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)
9
Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его
10
Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток
11
Диэлектрики – вещество, содержащее только связанные заряды
12
Диэлектрики – вещество, содержащее только связанные заряды ДИЭЛЕКТРИК
13
Диэлектрики – разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ
14
Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!
15
Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда
16
Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные
17
Диэлектрики (полярные)
18
Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля
19
Диэлектрики – процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА
20
Диэлектрики – число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ
21
Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:
22
Полупроводники – вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК
Пример реальной цепи
Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.
Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.
Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:
Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
Лампочка
Подойдёт накаливания
Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
Ключ
Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
Провода
В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .
Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.
Источники питания. Внутренняя, внешняя электрическая цепь
Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:
- Обмотка генератора.
- Гальванический источник питания (батарейка).
- Выход трансформатора.
Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.
Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.
Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:
- Источники напряжения (ЭДС).
- Источники тока.
В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.
В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.
Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет
Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра
К примеру, действующее значение ЭДС.
Проводники и диэлектрики
В других типах материалов, таких как стекло, электроны атомов имеют очень маленькую свободу передвижения. Хотя внешние силы, такие как физическое трение, могут заставить некоторые из этих электронов покинуть свои атомы и перейти к атомам другого материала, они не так легко перемещаются между атомами внутри самого материала.
Эта относительная подвижность электронов в материале известна как электрическая проводимость (электропроводность). Электропроводность определяется типами атомов в материале (количество протонов в ядре каждого атома определяет его химическую идентичность) и тем, как атомы связаны друг с другом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками, а материалы с низкой подвижностью электронов (мало или совсем нет свободных электронов) называются диэлектриками. Ниже приведено несколько распространенных примеров проводников и диэлектриков:
Проводники | Диэлектрики |
---|---|
|
|
Следует понимать, что не все проводящие материалы имеют одинаковый уровень проводимости, и не все диэлектрики одинаково устойчивы к движению электронов. Электропроводность аналогична прозрачности некоторых материалов для света: материалы, которые легко «проводят» свет, называются «прозрачными», а те, которые этого не делают, – «непрозрачными». Однако не все прозрачные материалы одинаково пропускают свет. Оконное стекло лучше, чем большинство пластиков, и, конечно, лучше, чем «прозрачное» стекловолокно. Так же и с электрическими проводниками, одни лучше других.
Например, серебро является лучшим проводником в списке «проводников», предлагая более легкий проход для электронов, чем любой другой упомянутый материал. Грязная вода и бетон также считаются проводниками, но эти материалы обладают значительно меньшей проводимостью, чем любой металл.
Также следует понимать, что некоторые материалы в зависимости от условий изменяют свои электрические свойства. Стекло, например, является очень хорошим диэлектриком при комнатной температуре, но становится проводником при нагревании до очень высокой температуры. Такие газы, как воздух, обычно изолирующие материалы, также становятся проводящими при нагревании до очень высоких температур. Большинство металлов при нагревании становятся худшими проводниками, а при охлаждении – лучшими. Многие проводящие материалы становятся идеально проводящими (это называется сверхпроводимостью) при чрезвычайно низких температурах.
Особенности понятия
Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.
Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.
Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:
- ионную;
- электронную;
- дырочную.
Вся правда о Мифах
Серебро.
Самый лучший проводник тепла и электричества является также и самым отражающим из всех химических элементов. Главный недостаток серебра в том, что оно слишком дорогое. Единственная причина, почему в нашем электрооборудовании мы используем не серебряные, а медные провода, заключается в том, что медь — второй по проводимости элемент — намного дешевле.
Помимо украшений, серебро главным образом используется в фотопромышленности, батарейках с длительным сроком эксплуатации и солнечных панелях.
Серебро обладает любопытнейшей способностью стерилизовать воду. Причем требуется буквально крошечное количество — десять частей на миллиард. Сей удивительный факт был известен еще с древнейших времен: так, в V веке до н. э. Геродот писал о персидском царе Кире, который постоянно возил с собой личный запас воды, взятой из особого источника, вскипяченной и запечатанной в серебряные сосуды.
И римляне, и греки не раз отмечали, что еда и питье, помещенные в серебряную посуду, сохраняются намного дольше. Сильные бактерицидные качества серебра использовались за множество веков до того, как были обнаружены сами бактерии. Этим можно объяснить, почему на дне древних колодцев часто находят серебряные монеты.
Небольшое предостережение, прежде чем вы начнете лить пиво в свою серебряную кружку.
Во-первых, серебро хоть и убьет бактерии в лабораторных условиях, однако далеко не факт, что оно даст тот же самый эффект, оказавшись у вас внутри. Многие из предполагаемых достоинств серебра до сих пор не подтверждены. А Управление по санитарному надзору за качеством пищевых продуктов и медикаментов в США даже запретило компаниям рекламировать пользу серебра для здоровья.
Во-вторых, существует такая болезнь — аргирия. Ее развитие напрямую связано с попаданием внутрь организма человека частиц серебра, растворенных в воде. Наиболее явным симптомом аргирии является отчетливый голубой оттенок кожи.
С другой стороны, соли серебра являются наиболее безопасным заменителем хлора в воде плава тельных бассейнов, а в США серебром даже пропитывают носки легкоатлетов, чтобы ноги не пахли.
Вода — исключительно плохой проводник электричества, особенно вода чистая, которая, кстати, используется как диэлектрик. Все дело в том, что электричество проводят не молекулы Н2O, а растворенные в воде химикаты — например, соль.
Морская вода проводит электричество в сто раз лучше пресной, но даже при этом она в миллион раз худший проводник электричества по сравнению с серебром.
Почему диэлектрики не проводят электрический ток
Низкая проводимость обусловлена строением молекул диэлектрика. Частицы вещества тесно связаны друг с другом, не могут покинуть пределы атома и перемещаться по всему объёму материала. Под воздействием электрического поля частицы атома способны слегка расшатываться — поляризоваться.
В зависимости от механизма поляризации, диэлектрические материалы подразделяются на:
- неполярные — вещества в различном агрегатном состоянии с электронной поляризацией (инертные газы, водород, полистирол, бензол);
- полярные — обладают дипольно-релаксационной и электронной поляризацией (различные смолы, целлюлоза, вода);
- ионные — твёрдые диэлектрики неорганического происхождения (стекло, керамика).
Диэлектрические свойства вещества непостоянны. Под воздействием высокой температуры или повышенной влажности электроны отрываются от ядра и приобретают свойства свободных электрических зарядов. Изоляционные качества диэлектрика в этом случае понижаются.
Надёжный диэлектрик — материал с малым током утечки, не превышающим критическую величину и не нарушающим работу системы.
Watch this video on YouTube