Назначение мррт-контроллер заряда солнечной батареи

Способы подключения контроллеров

Перед подключением необходимо убедиться, что напряжение солнечных панелей не превышает номинал контроллера. Если оно больше, надо сменить прибор на более мощный, способный работать с высокими показателями тока и напряжения.

Перед началом работ надо выделить для установки контроллера место с соответствующими условиями — сухое, чистое, отапливаемое. Не должно быть контакта с солнечными лучами, не допускается наличие поблизости механизмов, создающих вибрацию.

PWM

Порядок подключения контроллеров PWM состоит из следующих этапов:

присоединение аккумуляторов к соответствующим клеммам прибора

Важно проследить за соблюдением полярности
в точке подключения плюсового провода необходимо установить предохранитель
к соответствующим контактам подключить провода от солнечных панелей, соблюдая полярность
на выход нагрузки включить сигнальную лампу. Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора

Его можно присоединять только к блоку АКБ

Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора. Его можно присоединять только к блоку АКБ.

MPPT

Принцип подключения этих контроллеров не отличается от вышеизложенного, но могут потребоваться некоторые дополнения. Например, на мощных системах необходимо использовать кабель, выдерживающий плотность проходящего тока не менее 4 ампер на квадратный миллиметр сечения.

Перед началом подключения надо вынуть предохранители из солнечных панелей и блока АКБ. После соединения контроллера с аккумуляторами и солнечными модулями производится подключение заземляющего контура и датчика температуры. Проверяют правильность всех соединений, после чего обратно устанавливают предохранители и включают систему.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Такие контроллеры в настоящее время сняты с производства и давно не используются, хотя в некоторых системах их еще можно встретить. Единственным достоинством можно назвать простоту схемы, делающую работу прибора надежной и устойчивой. Подключение выполняется путем присоединения входных и выходных проводов к аккумуляторам и солнечным панелям, никакой дополнительной коммутации не имеется.

Способы подключения контроллеров

Перед подключением необходимо убедиться, что напряжение солнечных панелей не превышает номинал контроллера. Если оно больше, надо сменить прибор на более мощный, способный работать с высокими показателями тока и напряжения.

Перед началом работ надо выделить для установки контроллера место с соответствующими условиями — сухое, чистое, отапливаемое. Не должно быть контакта с солнечными лучами, не допускается наличие поблизости механизмов, создающих вибрацию.

PWM

Порядок подключения контроллеров PWM состоит из следующих этапов:

присоединение аккумуляторов к соответствующим клеммам прибора

Важно проследить за соблюдением полярности
в точке подключения плюсового провода необходимо установить предохранитель
к соответствующим контактам подключить провода от солнечных панелей, соблюдая полярность
на выход нагрузки включить сигнальную лампу. Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора

Его можно присоединять только к блоку АКБ

Кроме этого, не допускается присоединение на контакты, предназначенные для соединения с нагрузкой, инвертора. Его можно присоединять только к блоку АКБ.

MPPT

Принцип подключения этих контроллеров не отличается от вышеизложенного, но могут потребоваться некоторые дополнения. Например, на мощных системах необходимо использовать кабель, выдерживающий плотность проходящего тока не менее 4 ампер на квадратный миллиметр сечения.

Перед началом подключения надо вынуть предохранители из солнечных панелей и блока АКБ. После соединения контроллера с аккумуляторами и солнечными модулями производится подключение заземляющего контура и датчика температуры. Проверяют правильность всех соединений, после чего обратно устанавливают предохранители и включают систему.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Такие контроллеры в настоящее время сняты с производства и давно не используются, хотя в некоторых системах их еще можно встретить. Единственным достоинством можно назвать простоту схемы, делающую работу прибора надежной и устойчивой. Подключение выполняется путем присоединения входных и выходных проводов к аккумуляторам и солнечным панелям, никакой дополнительной коммутации не имеется.

Самодельный контроллер: особенности, комплектующие

Устройство предназначено для работы только с одной солнечной панелью, которая создает ток с силой, не более 4 А. Емкость аккумулятора, зарядкой которого управляет контроллер, является 3 000 А*ч.

Для изготовления контроллера нужно подготовить следующие элементы:

  • 2 микросхемы: LM385-2.5 и TLC271 (является операционным усилителем);
  • 3 конденсатора: С1 и С2 являются маломощными, имеют 100n; С3 имеет емкость 1000u, рассчитан на 16 V;
  • 1 индикаторный светодиод (D1);
  • 1 диод Шоттки;
  • 1 диод SB540. Вместо него можно использовать любой диод, главное, чтобы он мог выдержать максимальный ток солнечной батареи;
  • 3 транзистора: BUZ11 (Q1), BC548 (Q2), BC556 (Q3);
  • 10 резисторов (R1 – 1k5, R2 – 100, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k). Все они могут быть 5%. Если хочется большей точности, то можно взять резисторы 1%.

Каким образом функционирует МРРТ-контроллер

Суть принципа работы МРРТ-контроллера в том, что на протяжении дня ведется отслеживание точки максимальной мощности (ТММ).

В течение дня эта точка меняется, т.к. фотоэлектрический модуль вырабатывает электрический ток путем преобразования в него лучей солнца. Фотоэлементы вбирают в себя фотоны — частицы света солнца, в которых содержится энергия солнца. В тот момент, когда фотон поглощается, происходит его расщепление на составные элементы. Высвобождается электрон — носитель энергии. В цепи замыкания происходит образование тока. Затем электроны генерируются в готовый продукт — электричество.

Главные показатели для определения величины напряжения — яркость солнечных лучей, угол падения, нагрев батареи. При пасмурной погоде выработка электроэнергии падает, т.к. солнечного света недостаточно. Использование МРРТ-контроллера держит производство электричества на высоком уровне за счет отслеживания того участка солнечной батареи, где концентрируется максимальное количество фотонов.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору. Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Виды приборов

Контроллеры для солнечных батарей представлены в нескольких видах:

  • Устройства On/Off.
  • PWM контроллеры.
  • MPPT контроллеры.
  • Устройства гибридного типа.
  • Самодельные контроллеры.

Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

Устройства On/Off

Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ. Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока

На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%

Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов. Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

Контроллеры типа PWM

Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока. Прибор разработан с целью устранения проблемы неполной зарядки. 100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

MPPT контроллеры

МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM.

На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

Устройства гибридного типа

Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен принцип работы МРРТ и PWM контроллеров. Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

Самодельные приборы

В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

Подбор контроллера по типу АКБ

Различные по типу АКБ необходимо заряжать по различным программам зарядки. Это связано с различным химическим составом аккумуляторов. Программы зарядки имеют разные алгоритмы заряда. В соответствии с выбранной программой зарядки акб контроллер заряда регулирует напряжение и силу тока в установленном диапазоне. Современные контроллеры заряжают контроллеры по технологии широтно-импульсной модуляции, такие контроллеры называются ШИМ(PWM) контроллеры. Причем более дорогие контроллеры, которые называются MPPT, использующие технологию поиска точки максимальной мощности от массива солнечных батарей тоже заряжают аккумуляторы по технологии ШИМ. Сначала MPPT контроллер отбирает максимальную мощность, а далее используя ШИМ преобразователь, заряжает акб в соответствии с установленной программой зарядки.

В зависимости от имеющихся аккумуляторов, необходимо выбрать контроллер, имеющий программу заряда именно для вашего типа акб. Рассмотрим основные типы АКБ и условия их заряда:

1) Свинцово-кислотные с жидким электролитом. Заряжаются обычно напряжением не выше 14-15 вольт, можно и выше до 17 вольт, но электролит быстро закипит и начнется процесс его выкипания и разрушения пластин, поэтому придется безотрывно следить за процессом заряда и при начале образования пузырьков, все равно опустить напряжение до 14 вольт, или отключить заряд и дать остыть аккумулятору. Также такие аккумуляторы при заряде выделяют взрывоопасный газ, поэтому их необходимо заряжать с открытыми клапанами и в хорошо вентилируемом помещении.

2) Свинцово-кислотные герметичные с загущенным или абсорбированным электролитом. Это аккумуляторы, изготовленные по технологии GEL и AGM. Данные аккумуляторы необходимо заряжать напряжением не выше 14 вольт. Это связано с тем, что если начнется процесс нагрева, загущенного или абсорбированного электролита, то структура электролита начнет разрушаться, и потеряет свои свойства, причем в отличии от жидко-кислотных, электролит невозможно поменять или восстановить.

3) Щелочные АКБ. Требуют заряд напряжением от 10В до 17В, необходимо следить за процессом заряда.

4) Никелевые

5) Литиевые, имеют в составе специальный блок управления зарядом.

Простые контроллеры заряда имеют одну или две программы зарядки для свинцово-кислотных акб для негерметичных жидкостных и для герметичных GEL или AGM аккумуляторов.

Советы по выбору контроллера для солнечной батареи

Чтобы не совершить ошибку при покупке, учитывайте такие аспекты:

Мощность солнечных батарей не должна превышать мощности контроллера — это приводит к поломке. Учитывайте, что не каждое устройство располагает функцией ограничения мощности. На деле такой опцией оснащены только модели от продвинутых производителей. К примеру, линейка «Tracer A» от компании EpSolar. Подобный ограничитель указывается в технических характеристиках.
В расчетах учитывайте, что из-за низких температур общий показатель КПД гелиосистемы увеличивается, в то время как показатель номинальной мощности (в техпаспорте) указывается для средней температуры 25°С. Для примера: у кремниевых батарей температурный коэффициент колеблется от 0,3% до 0,5% на градус по Цельсию. Значит, для -25°С мощность увеличится на 20%

Если не брать это во внимание, то высок риск купить неподходящий контроллер.
Никогда не устанавливайте контроллер с меньшим номиналом — он сломается, даже если вы собираетесь использовать его для неполной нагрузки. Ситуации случаются разные, и от капризов погоды не застрахован никто.
Сами производители отмечают, что лучший контроллер для солнечных батарей — тот, который оснащен температурной компенсацией зарядных напряжений

От температуры аккумулятора зависит предельное напряжение зарядки. Иными словами, с наличием встроенного или подключенного температурного датчика вы сможете следить за перегревом устройства. Это позволяет избежать поломок и повысить точность работы аккумулятора.
Для измерения выработки энергии от Солнца учитывайте среднемесячные значения за пять-семь лет — не только последние показатели. Это позволяет увидеть широту колебаний солнечного массива и выбрать не только подходящие модули, но и соответствующий им контроллер.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

Основное назначение

Контроллер заряда аккумуляторной батареи (АКБ) от солнечной батареи предназначен для поддержания уровня заряда аккумуляторов, который также не допускает их полную разрядку или перезарядку. К таким устройствам обычно подключают свинцовые аккумуляторы из-за своей распространенности, однако, возможно подключение других разновидностей. Контроллер для солнечных батарей выполняет большое количество функций, благодаря которым обеспечивается надежная и эффективная работа. Основными из них являются:

  • выбор наиболее эффективной системы заряда аккумулятора;
  • мониторинг заряженности батареи;
  • автоматическое включение и выключение;
  • грамотное распределение энергии;
  • защита от перенапряжения и разрыва цепи.

Вопросы и ответы по контроллерам заряда для солнечных батарей

В подавляющем большинстве случаев нет. Это связано с тем, что обычно:

  • мощность инвертора намного превышает максимальную мощность выхода на нагрузку солнечного контроллера
  • большинство инверторов имеют большие емкости на входе и выходе. Эти конденсаторы используются для фильтрации гармоник и помех на входе инвертора. При первом подключении источника постоянного тока эти конденсаторы начинают заряжаться, что приводит к очень большим входным токам инвертора (в сотни ампер) в течение короткого промежутка времени. Этого может быть достаточно для того, чтобы транзисторы на выходе контроллера заряда вышли из строя, даже если контроллер имеет защиту от короткого замыкания в нагрузке. Если инвертор подключен к выходу контроллера, это обычно приводит к срабатыванию защиты контроллера или, в большинстве случаев, выходу его из строя из-за того, что защита контроллера по короткому замыканию не успевает сработать.

Мы не рекомендуем присоединять инвертор к выходу контроллера, даже в том случае, если его номинальная мощность меньше номинальной мощности выхода контроллера. Инвертор может заработать после нескольких попыток (т.е. когда его входной конденсатор зарядится), но это не является нормальным режимом работы.

Поэтому инвертор обычно подключают напрямую к аккумуляторной батарее. Защита аккумулятора от глубокого разряда при этом осуществляется инвертором. Обычно инверторы имеют напряжение защитного отключения примерно 1,75В на банку (т.е. 10,5 В для 12В, для других напряжений нужно умножать на соответствующий коэффициент). “Продвинутые” инверторы могут регулировать напряжение защитного отключению, простые – не могут. Если режимы работы системы таковы, что происходит частое срабатывание защиты инвертора по низкому напряжению аккумуляторов, нужно использовать защитные возможности контроллера. Дело в том, что напряжение срабатывания защиты инвертора соответствует почти полному разряду аккумулятора при типичных токах разряда (около 0,1С). Это приводит к резкому сокращению срока службы аккумулятора.

Солнечные контроллеры рассчитаны на работу именно в регулярных циклических режимах заряда-разряда, поэтому напряжение защитного отключения контроллера обычно значительно выше, около 11,1-11,4 (около 1,87 В на банку 2В). Поэтому при работе защиты по напряжению контроллера, срок службы АБ можно значительно повысить.

Как же правильно подключить инвертор в системе солнечного электроснабжения, учитывая ограничения контроллера, указанные выше?

Для этого нужно подключить к выходу контроллера реле (на соответствующее напряжение постоянного тока 12, 24 или 48В и ток, не превышающий номинальный ток контроллера), с коммутирующими контактами, рассчитанными на максимальный потребляемый инвертором ток. Инвертор должен подключаться к аккумуляторной батарее через эти контакты. В такой схеме защитные функции будет выполнять контроллер заряда. Когда контроллер дает команду на отключение нагрузки из-за разряда аккумулятора, реле обесточивается и его контакты размыкают питающую инвертор цепь. Обращайтесь к нашим специалистам для получения схем подключения.

Диод – для гашения всплесков напряжения в индуктивности обмотки реле, его номинал зависит от выбранного реле. Обычно диода на 1А бывает достаточно. Силовые реле мы не продаем, поищите любые контакторы в электротехнических магазинах.

Примечание.

Применяемые на практике виды

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и  ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум  входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

Выводы и полезное видео по теме

Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.

Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.

Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.