Особенности определения мощности сети
Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.
Вам это будет интересно Измерение электрической мощности
Важно! Несоблюдение правил пользования электросетью может привести к отказу в работе и даже к пожару. Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:
Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:
- В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
- Мощность подключаемых приборов измеряется в Ваттах.
Информация на электроприборе может быть обозначена по-разному Как высчитать мощность электричества? Для вычисления потребуется формула:
Р = U*I, где:
P — мощность,
U — напряжение в Вольтах,
I — сила тока в Амперах.
Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.
Для определения силы тока в розетке стоит использовать мультиметр
https://youtube.com/watch?v=KG72XIspnMI
Как определить?
Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.
Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.
Смотрим в техпаспорт
Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.
В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.
Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.
Закон Ома в помощь
Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:
P = U2/R. U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле P = 48 400/R Вт.
Например, при R = 200 Ом получаем мощность Р = 240 Вт.
Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.
Используем электросчетчик
При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.
При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.
Лицевая панель бытового счетчика электроэнергии с оптическим индикатором.
После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.
При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.
Прибор для для определения мощности «Ваттметр».
Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:
- включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
- оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
- отличается хорошими массогабаритными показателями.
Прибор готов к работе немедленно после включения.
Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.
Формула мощности электрического тока
Учимся легко считать потребляемую мощность электроприбора
Для практических расчетов неудобно пользоваться базовым определением. Ниже приведены формулы, которые помогут узнать потребление электричества с использованием стандартных параметров источника питания и паспортных данных подключенных устройств. При отсутствии этих сведений в сопроводительной документации можно получить необходимые данные на официальном сайте производителя либо с помощью специальных измерений.
Мощность электрического тока через напряжение и ток
Так как разница потенциалов (F1-F2) соответствует напряжению (U), несложно сделать вывод о допустимости применения соотношений, определенных в законе Ома. Мощность (P) дополнительно характеризуется силой тока (I) в определенном участке цепи. Итоговое выражение:
P = U * I.
Обозначение мощности по международной системе СИ – ватты (Вт). Для маленьких и больших величин пользуются кратными приставками: «милли-», «микро-», «мега-» и другими. Несложно понять, как обозначается мощность:
5 800 Вт = 5,8 киловатт = 5,8 кВт.
По аналогии с предыдущими рассуждениями можно выразить мощность следующим образом:
P = U2/R.
Чему равна мощность электрического тока через ток и сопротивление
Путем несложных преобразований определяют потребление энергии следующим образом:
P = I2 * R.
В этом и предыдущем разделе показана зависимость мощности от номинала подключенного резистора. При рассмотрении полной цепи учитывают внутреннее сопротивление источника и проводимость соединений.
Чтобы не ошибаться при расчетах, можно скопировать эту картинку с основными формулами
Принципы расчета тока
Знать в амперах силу тока, протекающего в цепи, важно для расчета сечения провода, которым прокладывается проводка, и выбора автомата, предохраняющего сеть от перегрузок. Большее, чем нужно, значение сечения вызывает дополнительные затраты, меньшее — вызовет перегрев электропроводки, что чревато расплавлением изоляции кабеля и пожаром
Правильный выбор автомата также важен, так как большой запас по току окажется бесполезен, если выключатель сработает поздно, и оборудование успеет выйти из строя, а слишком маленький запас вызовет очень частое срабатывание аварийного отключения при повышении потребляемой мощности в допустимых пределах.
По закону Ома можно рассчитать ток как отношение напряжения между двумя точками к сопротивлению этого участка цепи (сопротивление самого провода). Этот параметр у провода зависит от его материала, длины и сечения. При использовании стандартных материалов (алюминий или медь) единственным параметром, на который можно влиять остается сечение проводника. А он зависит от предполагаемого протекающего тока.
Мощность тока
Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.
Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).
Будет интересно Что такое коэффициент полезного действия (КПД) и как рассчитать его по формуле
Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».
Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.
Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).
Расчетные формулы мощности тока
Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.
Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.
Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.
Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.
Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.
Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго. Отвлекся. Не судите за это строго.
Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?
Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.
Мощность электрического тока
Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи
Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания
Смотрим потребление тока. 0,71 Ампер
Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.
Беру галогенную лампу от фары авто и также цепляю ее к блоку питания
Смотрим потребление. 4,42 Ампера
Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.
А теперь давайте посчитаем, какая лампочка больше всех Ватт “отбирает” у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.
Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность – это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг – на экскаваторе:
Кто быстрее справится с задачей за одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.
А теперь представьте, что нам надо полностью под ноль сточить эту железяку:
Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.
Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее. Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина – это давить железяку в полсилы.
Ну вот мы и снова переходим к электронике 😉
Поток воды – сила тока, давление в трубе – напряжение, давление железяки на круг – сопротивление. И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше
Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как и в прошлом опыте, где мы стачивали железяку за определенное время.
И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся, так как сила потока воды в трубе увеличится, а следовательно, мы еще быстрее сточим нашу железку.
По какой формуле вычисляется мощность электрического тока
Она выглядит как P = A / t = I x U, обозначения следующие:
- P – мощность тока в ваттах (Вт);
- A – его работа на данном участке цепи в джоулях (Дж);
- t – время, за которое совершена работа (в секундах);
- U – напряжение электричества для участка цепи в вольтах (В);
- I – сила в амперах (А).
Верное определение мощности критически важно для соблюдения правил техники безопасности при эксплуатации электросети и исключения возгораний. Это может произойти, если проводка выбрана неправильно
Для измерения необходимо использовать специальные приборы, но это возможно не всегда.
Определение мощности для переменного тока:
- с помощью амперметра;
- по формуле P= U х I с использованием значений в указанный момент времени;
- по формуле P= U х I x сos φ, если есть сдвиг фаз.
Символ φ обозначает коэффициент мощности. Когда к сети подключен только свет или приборы для нагревания, он равен 1, для более сложного и мощного оборудования промышленного типа цифра составляет 0,8. Формула для расчета мощности через сопротивление в сети постоянного тока – P = IU.
https://youtube.com/watch?v=yP1V4Zzjl6Q
Как узнать силу тока, зная мощность и напряжения
Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.
Расчет мощностного показателя по амперам и ваттам
Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.
Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства
Расчет электроэнергии через электромощность и электронапряжение
Расчет потребляемой мощности
Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.
Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.
Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.
Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации. Подсчет потребляемой мощности
Подсчет потребляемой мощности
Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.
https://youtube.com/watch?v=dwaSF3W4TxU
Как рассчитать мощность, зная силу тока и напряжения?
Разобравшись с током и напряжением, уже будет легче посчитать мощность, используя все ту же формулу. Однако для переменного тока различают несколько мощностей:
- мгновенная;
- активная;
- реактивная;
- полная.
Мгновенная мощность рассчитывается в момент измерения и может сильно отличаться от полной мощности. Активной называют полезную мощность, которая определяется по формуле:
Косинус фи в синусоидальном токе является коэффициентом мощности, выражается в процентах от 0 до 100 или цифрах от 0 до 1. Показывает сдвиг фаз между током и напряжением. Для трехфазной сети общая активная мощность складывается из отдельных фазных мощностей.
Реактивная мощность учитывает расход энергии на реактивную нагрузку (индуктивность, конденсатор, обмотка электродвигателя), которая снова возвращается к источнику. Для этого используется формула:
Полная мощность состоит из активной и реактивной, причем реактивная может иметь отрицательный или положительный знак.
Интересная инфа по теме
Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.
https://youtube.com/watch?v=SzU8fOkxbQA
Приборы для измерения величин
Измерения электротехнических величин производятся специальными устройствами. Ток измеряется амперметром, напряжение — вольтметром, а мощность можно померить ваттметром, либо вычислить ее по формуле из значений первых двух значений.
С помощью онлайн-калькулятора можно вычислить не только ток при известной мощности потребителей, но и сечение нужных для электропроводки проводов.
Вычисление силы тока и параметров проводки по мощности потребителей электроэнергии — очень важная часть проектирования здания или квартиры, поэтому нужно подойти к этому взвешенно и ответственно.
https://youtube.com/watch?v=APdMGJakxDI
Работа в различных условиях
Модуль комплексного показателя интенсивности передвижения равняется показателю полной нагрузки. Действительная составляющая часть приравнивается к активной силе, а мнимая считается реактивным видом. Имеет место положительный или отрицательный знак, что зависит от интенсивности загруженности цепи. Комплексная мощность должна соответствовать сопряженному электрическому сопротивлению. Положительная нагрузка характеризуется соотношением Р > 0, а знак минус проявляется в случае Р < 0.
Измерение мощностных характеристик переменного потока электронов проводится при пропускании равного по значению тока по фазным проводникам. Показатели силы течения заряженных частиц с применением нулевого проводника имеют ничтожную размерность. Равномерная или симметричная фазовая нагрузка в трехфазной магистрали зависит от величины протекающих токов. Неравномерная или несимметричная нагрузка зависит от прохождения потока по нейтральным или нулевым кабелям. Общий мощностной уровень находится суммированием.
Если присутствует фазовый сдвиг между напряжением и силой тока, то он совпадает с углом смещения между векторными радиусами показателей электротока. В условиях переменного напряжения совпадение векторных радиусов тока и вольтажа отмечается только при отсутствии в цепи конденсаторов и катушек индукции. Установка индукторов не мешает совпадению фазных значений. При этом происходит векторное вращение равной интенсивности. График смещения внутреннего угла остается постоянным.
Если в магистрали происходит сдвиг напряжения и переменного тока, то мощностные показатели представляются значением с отрицательным знаком, так как калькулятор перемножает положительные и отрицательные величины. Продолжительность периодов зависит от уровня смещения фаз. При этом длительность отрицательных нагрузок определяет характеристики сдвига. При расчетах используются показатели сопротивления, которые знакомы из физического закона Ома.
Вычисление мощности
Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.
При постоянном напряжении
Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:
I = P / U,
где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.
Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.
Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.
https://youtube.com/watch?v=dHDBCH-Blew
При переменном напряжении
Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:
- Меньшие затраты при передаче по ЛЭП;
- Простое создание повышающих и понижающих напряжение устройств;
- Отсутствие полярности.
Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:
P = U ⋅ I ⋅ cosφ,
где cosφ определяет характер нагрузки.
В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.
Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.
Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:
P = U ⋅ I ⋅ sinφ.
Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).
https://youtube.com/watch?v=waSPR2oGOI4
В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:
- Более экономная передача электричества на дальние расстояния;
- Уменьшение затрат при создании электродвигателей 3-х фазной системы;
- Равномерность механической нагрузки на электрогенератор.
Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:
P = 1,73 ⋅ I ⋅ U ⋅ cosφ.
Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.
Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:
I = P /(U ⋅ cosφ).
Расчет электрических цепей
Все формулы, используемые для расчётов электроцепей, вытекают одна из другой.
Так, например, по формуле расчета мощности можно произвести расчет силы тока, если известны P и U.
Чтобы узнать, какой ток будет потреблять утюг (1100 Вт), включенный в сеть 220 В, нужно выразить силу тока из формулы мощности:
I = P/U = 1100/220 = 5 A.
Зная расчётное сопротивление спирали электроплиты, можно найти P устройства. Мощность через сопротивление узнают по формуле:
Существует несколько методов, позволяющих решать поставленные задачи по расчётам различных параметров заданной цепи.
Расчёт мощности для цепей разного рода тока помогает правильно оценить состояние линий электропитания. Бытовые и промышленные аппараты, подобранные в соответствии с заданными параметрами Pном и S, будут работать надёжно и выдерживать максимальные нагрузки годами.
Формула мощности для постоянного электрического тока
Поэтому формулы мощности в электронике имеют вот такой вид:
Отсюда A=IUt
где,
А – это полезная работа, Джоули
t – время, секунды
U – напряжение, Вольты
I – сила тока, Амперы
P – собственно сама мощность, Ватты
R – сопротивление, Омы
Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.
А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.
Единица измерения мощности
Вместо соотношения, принято использовать единицу «ватт» (Вт)
Измеряют W и в лошадиных силах (л.с.). В электротехнике эта единица не применяется. Но иногда требуется сравнить, к примеру, мощность дизельного двигателя, выражаемую обычно в л.с., и электрического, определяемую в Вт.
Соотношение следующее: 1 л.с. = 735,5 Вт (в англоязычных странах — 745,7 Вт). Между тем, желающие обзавестись ИБП, стабилизатором или автономным электрогенератором обнаруживают, что мощность в характеристиках устройства указана вовсе не в ваттах, а в вольт-амперах (ВА). Поскольку W = U * I, то мощность действительно можно выражать в таких единицах, то есть = .
Но почему же не используют привычные ватты? Так поступают, чтобы отличить W полную (это она измеряется в ВА) от так называемой активной. Дело в том, что в электроприемниках с обмотками, прежде всего электродвигателях и трансформаторах (например, блоки питания), в полезную работу превращается не вся потребляемая электроэнергия, а только ее часть.
Обмотка — это катушка, а протекающий в катушке ток, как было сказано, создает сильное магнитное поле. Если ток переменный, то и параметры поля изменяются, а такое поле, согласно открытому М. Фарадеем закону электромагнитной индукции, наводит в самой катушке ЭДС самоиндукции.
Последняя направлена против изменения силы тока при ее возрастании (первая четверть периода), а при снижении (вторая четверть) — в одном с ней направлении.
На преодоление ЭДС самоиндукции тратится часть энергии, именуемая реактивной мощностью. Данное явление станет более понятным при рассмотрении аналогичного в механике. Если точильщик вращает точильный круг вперед-назад, то часть энергии тратится не на полезную работу (правка лезвия), а на преодоление инерции круга.
В каждом полупериоде круг требуется раскрутить, затем остановить. Это и есть аналог реактивной мощности. То, какая часть полной потребляемой электрической мощности превратится в полезную работу и есть доля активной мощности, выражается характеристикой «cosФ»: cosϕ = Wакт / Wпол, где Wакт — активная мощность, Wпол — полная мощность.
Что такое коэффициент мощности
Параметр cosϕ указывается в характеристиках всех подобных токоприемников. Необходимо учитывать, что приводимая в характеристиках мощность является не активной в полном смысле, а мощностью на выходе. Если это электродвигатель, то указывается механическая W на его валу.
То есть при расчетах требуется учитывать еще и КПД, ведь часть активной мощности будет затрачена на преодоление трения в подшипниках, перемагничивание сердечника, охлаждение и пр. Таким образом, полная потребляемая мощность при известной активной (указывается в характеристиках) определяется так: Wпол = Wакт / (КПД * cosϕ). Вот как это применяется на практике.
Положим, требуется подобрать ИБП для компьютера с блоком питания мощностью 400 Вт, средние параметры таких блоков:
- КПД: 65% – 70% (0,65 – 0,7);
- cosϕ: 0,7.
Тогда потребуется ИБП мощностью не менее: W = 400 / (0,65 * 0,7) = 879,12 ВА.
Например, подбирается стабилизатор для холодильника с такими характеристиками:
- мощность: 0,6 кВт;
- КПД: 0,75;
- cosϕ: 0,8.
Его мощность должна составлять: W = 600 / (0.75 * 0.8) = 1000 ВА. Таким образом, известная мощность электрогенератора или ИБП не позволяет без сведений о характеристиках электроприемника судить о том, какую он выдаст активную мощность. Источник мощностью 3000 ВА при cosϕ = 0,8 выдаст 2,4 кВт полезной мощности, а при cosϕ = 0,7 — только 2,1 кВт (без учета КПД электроприемника).
Недавно в России с целью реализации стандарта энергосбережения 2007 г. была принята сертификация «80+», требующая поддерживать КПД компьютерных блоков питания на уровне 80% или выше.
Сила тока и сопротивление
Как усилить поток воды из шланга? Можно добавить напор (увеличить давление), но не слишком сильно, иначе шланг разорвёт. А можно взять шланг большего диаметра.
То же справедливо и для проводника: чем больше он в сечении, тем больший поток электронов может пропустить. Но если сила тока окажется слишком большой, проводник перегреется и сгорит.
Именно так работают плавкие предохранители в электронных приборах: при резком скачке силы тока тонкий проводок перегорает, и устройство отключается от сети.
Плавкие предохранители: новый и отработанный
Чем короче и шире шланг, тем большее количество воды он способен пропустить за единицу времени. Также и с электричеством: сила тока, проходящего через проводник за секунду, зависит от сопротивления проводника. Только кроме длины и площади сечения на сопротивление влияет материал, из которого проводник сделан.
Формула сопротивления выглядит так:
l — это длина проводника, S — площадь его сечения, а ρ — удельное сопротивление, у каждого материала оно своё.
Вещества с низким удельным сопротивлением называются проводниками, они проводят электричество наиболее эффективно. Вещества с высоким удельным сопротивлением называют диэлектриками — их можно использовать в качестве изоляторов. Среднее положение занимают полупроводники — они проводят электричество, но не так хорошо, как проводники.
Сопротивление измеряется в Омах. Проводник обладает сопротивлением в 1 Ом, если на его концах возникает напряжение в 1 Вольт при силе тока в 1 Ампер.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS82020 вы получите бесплатный доступ к курсу физики 8 класса, в котором изучается сила тока!
Подводим итоги
- Что такое реактивная (бесполезная) мощность – ситуация, когда ток отстаёт или опережает напряжение, т.е. когда напряжение достигло пика, а ток равен нулю и наоборот;
- Откуда появляется реактивная мощность — в основном из-за электродвигателей и трансформаторов (этот пункт Вам еще не понятен, если вы новичок, подписывайтесь на блог и ждите статью про катушку индуктивности);
- Полезна ли реактивная мощность – она бесполезна и не производит никакой полезной работы, она лишь греет провода, поэтому чтобы уменьшить сечение кабеля, нам надо компенсировать реактивную составляющую. Также заводы оплачивают полную мощность, поэтому им надо компенсировать реактивную составляющую;
- Как компенсируют реактивную мощность – к сети подключают установки для компенсации реактивной мощности;
- Из-за чего возникает реактивная составляющая — в первую очередь электродвигатели, трансформаторы;
Ну вот и всё! Подписывайтесь и следите за обновлениями блога!