Тестер кварцевых резонаторов на микроконтроллере. как проверить кварцевый резонатор мультиметром. как работает кварцевый резонатор

Электрические параметры

Эквивалентная схема кварцевого резонатора – представляет собой электрическое описание кварцевого резонатора, работающего на резонансной частоте. Эквивалентная схема кварцевого резонатора представлена на рисунке 1. С0 – шунтирующая емкость. R1, L1 и С1 – соответственно динамическое сопротивление, динамическая индуктивность и динамическая емкость. Динамические параметры представляют собой соответствующие эквиваленты резонатора как электромеханической системы и определяются, в основном, характеристиками среза кварцевого элемента.

Шунтирующая емкость C0 – Емкость между выводами кристалла. Измеряется в пикофарадах. Шунтирующая емкость складывается из паразитной емкости кварца, емкости области электродов кристалла и емкости, вносимой кристаллодержателем. Шунтирующая емкость имеет значение порядка единиц пФ.

Динамическое сопротивление R1 – Параметр, характеризующий энергетические потери в колебательном контуре. Динамическое сопротивление R1 кварцевых резонаторов изменяется в интервале от нескольких Ом до сотен кОм в зависимости от частоты резонанса, номера гармоники и ряда конструктивных факторов. Часто обозначается как эквивалентное последовательное сопротивление ESR.

Динамическая индуктивность L1 – Параметр, характеризующий эквивалент массы в колебательном контуре. Динамическая индуктивность L1 кварцевых резонаторов изменяется в интервале от тысяч Гн для резонаторов низких частот до нескольких мГн для высокочастотных резонаторов.

Частота резонанса F – частота, определяемая в соответствии с формулой (5)

Емкость нагрузки СL

Рис. 2. Согласование емкости нагрузки

Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.

Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).

Например, для емкости нагрузки равной 16 пФ имеем

Cg = 2·(16-5) = 22 пФ

Уровень управления (drive level)

Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.

Главная —
Микросхемы —
DOC —
ЖКИ —
Источники питания —
Электромеханика —
Интерфейсы —
Программы —
Применения —
Статьи

История

Слово «кварц» происходит от немецкого Quarz ( справка · информация ) , имеющего славянское происхождение (чешские горняки называли его křemen ). Другие источники связывают происхождение этого слова с саксонским словом Querkluftertz , означающим поперечно- жильную руду .
 

Кварц — наиболее распространенный материал, который в мифологии австралийских аборигенов определяется как мистическое вещество мабан . Он регулярно встречается на кладбищах гробниц в Европе в контексте захоронения, таких как Ньюгрейндж или Кэрроумор в Ирландии . Ирландское слово для кварца grianchloch , что означает «Sunstone». Кварц также использовался в доисторической Ирландии , а также во многих других странах для изготовления каменных орудий ; Жильный кварц и горный хрусталь были добыты как часть каменной технологии доисторических народов.

В то время как нефрит издавна был самым ценным полудрагоценным камнем для резьбы в Восточной Азии и доколумбовой Америке, в Европе и на Ближнем Востоке различные разновидности кварца чаще всего использовались для различных типов ювелирных изделий и резьбы по твердому камню. , включая драгоценные камни с гравировкой и камеи , вазы из горного хрусталя и экстравагантные сосуды. Традиция продолжала производить предметы, которые очень ценились до середины 19 века, когда она в значительной степени вышла из моды, за исключением ювелирных изделий. В технике камеи используются цветные полосы оникса и других разновидностей.

Римский натуралист Плиний Старший считал кварц водяным льдом , навсегда замороженным по прошествии длительного времени. (Слово «кристалл» происходит от греческого слова κρύσταλλος , «лед».) Он поддержал эту идею, заявив, что кварц находится около ледников в Альпах, но не на вулканических горах, и что большие кристаллы кварца были сформированы в сферы для охладите руки. Эта идея сохранялась по крайней мере до 17 века. Он также знал о способности кварца разделять свет на спектр .

В 17 веке исследование кварца Николасом Стено проложило путь современной кристаллографии . Он обнаружил, что независимо от размера или формы кристалла кварца его длинные грани призмы всегда соединяются под идеальным углом 60 °.

Пьезоэлектрические свойства кварца были открыты Жаком и Пьером Кюри в 1880 году. Кварцевый генератор или резонатор был впервые разработан Уолтером Гайтоном Кэди в 1921 году. Джордж Вашингтон Пирс разработал и запатентовал кварцевые кварцевые генераторы в 1923 году. Уоррен Маррисон создал первые часы с кварцевым генератором на основе кварцевых генераторов. работа Кэди и Пирса в 1927 году.

Усилия по синтезу кварца начались в середине девятнадцатого века, когда ученые пытались создать минералы в лабораторных условиях, имитирующих условия, в которых минералы образовывались в природе: немецкий геолог Карл Эмиль фон Шафхойтль (1803–1890) был первым, кто синтезировал кварц, когда в 1845 году он создал микроскопические кристаллы кварца в скороварке. Однако качество и размер кристаллов, полученных в результате этих первых попыток, были плохими.

К 1930-м годам электронная промышленность стала зависимой от кристаллов кварца. Единственным источником подходящих кристаллов была Бразилия; однако Вторая мировая война прервала поставки из Бразилии, поэтому страны пытались синтезировать кварц в промышленных масштабах. Немецкий минералог Ричард Накен (1884–1971) добился определенных успехов в 1930-х и 1940-х годах. После войны многие лаборатории пытались вырастить крупные кристаллы кварца. В Соединенных Штатах Корпус связи армии США заключил контракт с Bell Laboratories и Brush Development Company из Кливленда, штат Огайо, на синтез кристаллов по инициативе Накена. (До Второй мировой войны Brush Development производила пьезоэлектрические кристаллы для проигрывателей пластинок.) К 1948 году Brush Development выращивала кристаллы диаметром 1,5 дюйма (3,8 см), самые большие на сегодняшний день. К 1950-м годам с помощью методов гидротермального синтеза в промышленных масштабах производились синтетические кристаллы кварца, и сегодня практически все кристаллы кварца, используемые в современной электронной промышленности, являются синтетическими.

Схема измерителя кварцев

За основу устройства взяты два генератора CD74HC4060 (74HC4060 не было в магазине, но судя по даташиту они ещё «круче»), один работает на низкой частоте, второй на высокой. Самыми низкочастотными какие у меня были, оказались часовые кварцы, а самым высокочастотным оказался негармониковый кварц на 30 МГц. Генераторы из-за их склонности к самовозбуждению было решено переключать просто коммутируя напряжение питания, о чём индицируют соответствующие светодиоды. После генераторов установил повторитель на логике. Возможно вместо резисторов R6 и R7 лучше установить конденсаторы (сам я не проверял).

Как оказалось, в устройстве запускаются не только кварцы, но и всякие фильтры о двух и более ногах, которые с успехом и были подключены в соответствующие разъёмы. Один «двуногий» похожий на керамический конденсатор запустился на 4 МГЦ, который после был с успехом применён вместо кварцевого резонатора.

На снимках видно, что применены два вида разъёмов для проверки радиодеталей. Первый сделан из частей панелек – для выводных деталей, а второй представляет фрагмент платы приклеенный и припаянный к дорожкам через соответствующие отверстия – для SMD кварцевых резонаторов. Для вывода информации применён упрощённый частотомер на микроконтроллере PIC16F628 или PIC16F628A, который автоматически переключает предел измерения, то есть на индикаторе частота будет или в кГц или в МГц.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 — 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

Особенности проверок

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Как проверить кварцевый резонатор

Проблемы с небольшими приборами возникают, если они получают сильный удар. Такое происходит при падении устройств, содержащих в конструкции резонаторы. Последние выходят со строя и требуют замены по тем же параметрам.

Проверка резонатора на работоспособность требует наличия тестера. Его собирают по схеме на основе транзистора КТ3102, 5 конденсаторов и 2 резисторов (устройство подобно кварцевому генератору, собранному на транзисторе).

Прибор необходимо в подключаемых соединениях, подключениях подключить к базе транзистора и отрицательному полюсу, защищая установкой защитного конденсатора. Питание схемы включения постоянное – 9В. Плюс подключают на вход транзистора, к его выходу – через конденсатор – частотомер, который фиксирует частотные параметры резонатора.

Схемой пользуются при настройке контура колебаний. Когда резонатор исправный, он при подключении выдает колебания, которые приводят к появлению переменного напряжения на эмиттере транзистора. Причем частота напряжения совпадает с аналогичной характеристикой резонатора.

Прибор неисправен, если частотомер не фиксирует возникновение частоты или определяет наличие частоты, но она – либо намного отличается от номинала, либо при нагреве корпуса паяльником сильно изменяется.

Кварцевый резонатор как проверить? Проверка кварцевых резонаторов

Колебаниям уделяется одна из важнейших ролей в современном мире. Так, даже существует так именуемая теория струн, которая утверждает, что всё вокруг нас — это просто волны. Но есть и другие варианты использования данных познаний, и одна из их — это кварцевый резонатор

Так бывает, что неважно какая техника временами выходит из строя, и они здесь не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как следует?

История

Кварцевый резонатор в герметичном стеклянном корпусе пальчикового бесцокольного исполнения

Резонатор на 4 МГц в миниатюрном металлическом герметизированном корпусе HC-49/US Металлические корпуса разнообразных размеров Пьезоэлектрический эффект был впервые открыт братьями Жаком и Пьером Кюри в 1880 году. Поль Ланжевен впервые практически использовал этот эффект в ультразвуковом излучателе и приемнике ультразвука в гидролокатора перед первой мировой войной.

Первый электромеханический резонатор, на основе сегнетовой соли, был изготовлен в 1917 году и запатентован в 1918 году Александром М. Николсоном (Alexander M. Nicholson) из компании Bell Telephone Laboratories, хотя его приоритет оспаривался Уолтером Гайтоном Кэди (Walter Guyton Cady), который изготовил кварцевый резонатор в 1921 году.

Некоторые улучшения в конструкцию кварцевых резонаторов предложены позже Льюисом Эссеном и Джорджем Вашингтоном Пирсом (George Washington Pierce).

Первые стабильные по частоте кварцевые резонаторы были разработаны в 1920—1930-х годах. Начиная с 1926 года, кварцевые резонаторы на радиостанциях стали использоваться в качестве элементов, задающих несущую частоту. В это же время резко возросло количество компаний, начавших выпускать кварцевые резонаторы, например, только до 1939 года в США было выпущено более чем 100 тыс. штук.

Пьезоэлектрики

На самом деле, кварц – это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.

Выглядит минерал кварц примерно вот так.


минерал кварц

Ну прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.

Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация – это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.

пьезоэффект

Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества – пьезоэлектриками.

Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.

https://youtube.com/watch?v=b1kGfBikKTw

Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия. Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.

Кварцевый резонатор-структура, принцип работы, как проверить

Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.

В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.

Для работы подходят только нечётные гармоники (другое название обертонов). К тому же, при их использовании показания по частоте увеличиваются на более низких амплитудах. Обычно максимальным становится девятикратное уменьшение высоты волны. Далее засечь изменения становится затруднительно.

Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера.

Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения.

Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.

В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.

Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 105 — 107. Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.

В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.

Принцип работы

Функции кварцевого резонатора обеспечиваются пьезоэлектрическим эффектом. Данное явление провоцирует возникновение электрического заряда в случае, если происходит механическая деформация некоторых типов кристаллов (из природных сюда относят кварц и турмалин).

Сила заряда при этом находится в прямой зависимости от силы деформации. Это называют прямым пьезоэлектрическим эффектом. Суть обратного пьезоэлектрического эффекта заключается в том, что если на кристалл воздействовать электрическим полем, он будет деформироваться.

Проверка работоспособности

Существует несколько несложных методов проверки состояния кварца в механизме. Вот пара из них:

  1. Чтобы достаточно точно определить состояние резонатора, потребуется подсоединить к генератору на выход осцилограф или частометр. Требуемые данные можно будет вычислить при помощи фигур Лиссажу. Однако, при подобных обстоятельствах возможно непреднамеренное возбуждение колебательных движений кварца как на обертонических, так и на основных частотах. Это может создавать неточность замеров. Такой метод может быть использован в диапазоне от 1 до 10 МГц.
  2. Частота работы генератора зависит от кварцевого резонатора. При подаче энергии генератор продуцирует импульсы, совпадающие с частотой основного резонанса. Череда этих импульсов пропускается через конденсатор, который отсеивает постоянный компонент, оставляя только обертоны, а сами импульсы передаются аналоговому частометру. Его легко можно сконструировать из двух диодов, конденсатора, резистора и микроамперметра. В зависимости от показаний по частоте будет изменяться и напряжение на конденсаторе. Данный метод тоже не отличается точностью и может применятся только в диапазоне от 3 до 10 МГц.

В целом, достоверную проверку кварцевых резонаторов можно осуществлять только при их замене. Да и подозревать поломку резонатора в механизме стоит только в самом крайнем случае. Хотя к портативной электронике, подверженной частым падениям, это не относится.

КВАРЦЕВЫЕ ГЕНЕРАТОРЫ GEYER ELECTRONIC

Geyer Electronic выпускает кварцевые генераторы для тактирования цифровых схем. Кварцевый генератор — это кварцевый резонатор и схема автогенератора в одном корпусе. В последние годы все большую популярность приобретают кварцевые генераторы в миниатюрных корпусах для поверхностного монтажа. Их основные параметры сведены в таблицу 3.

Таблица 3. Кварцевые генераторы Geyer Electronic для поверхностного монтажа

Серия Диапазон доступ- ных частот,1 (MГц) Диапа- зоны рабочих темпера- тур2, (°С) Неста- биль- ность частоты, (ppm) Напря- жение питания (В) Емкость нагр., макс. (пФ) Пере- клю- чение выхода в третье состо- яние Размеры корпуса, (мм)
KXO-97 1,0…50,0 -20…70 -40…85 ±50 (±100)4 5±10% 50 + 7,0/5,08/ 1,8
50,1…80,0 15…25
80,1…100,0 30
KXO-V97 1,0…50,0 3,3±10%5 20
50,1…80,0 15
80,1…160,0
KXO-V99 1,0…181,0 3,3 15 5,0/3,2/ 1,0
KXO-V96 1,0…80 2,5/3,0/ 3,3 3,2/2,5/ 1,2
KXO-V95 1,0…70,0 2,5/2,8/ 3,0/3,3 2,5/2,0/ 082

1, 2 — см. сноски для таблицы 1 4 ±50 (±100) в скобках указано значение нестабильности для диапазона температур от -40 до 85°С 5 доступны с напряжениями питания 1,8/2,5/3,0 B (с допуском ±10%)

Большинство современных микроконтроллеров и цифровых процессоров уже содержат встроенную схему автогенератора. Остается только подключить внешний кварцевый резонатор. Однако для многих приложений удобнее именно кварцевый генератор. В этом случае устройство получается компактнее и надежнее, а разработчику остается только правильно выбрать подходящий генератор. Расчет, изготовление и настройка собственной схемы кварцевого генератора для частот более 30…40 МГц требует определенных профессиональных знаний, опыта и специального оборудования. Даже на частотах до 30 МГц генератор, собранный на дискретных компонентах, часто запускается не на той частоте. Применение готового кварцевого генератора всегда гарантирует стабильный результат при меньшей занимаемой площади на печатной плате. Большинство серий кварцевых генераторов Geyer Electronic имеют вход для отключения выхода (перевода в третье состояние с большим выходным сопротивлением). Кварцевые генераторы широко применяют в портативных радиостанциях, в качестве опорных генераторов в GPS- или ГЛОНАСС-навигаторах, в системах точного измерения времени.

Компания также выпускает следующие типы кварцевых генераторов:

  • кварцевые генераторы, управляемые напряжением (VCXO- Voltage Controlled Crystal Oscillator). Частоту такого генератора в определенных пределах можно изменить, подавая управляющее напряжение на соответствующий вход;
  • термокомпенсированные кварцевые генераторы (TCXO- Temperature Compensated Crystal Oscillator). Эти генераторы имеют высокую температурную стабильность благодаря аналоговому или цифровому методу компенсации зависимости частоты от температуры. Термокомпенсированные кварцевые генераторы применяются в устройствах, где требуется быстрый выход на рабочий режим и повышенная стабильность частоты (радиолокационные станции, опорные генераторы мобильных и переносных радиопередающих устройств и т.п.);
  • термокомпенсированные кварцевые генераторы, управляемые напряжением (VCTCXO- Voltage Controlled Temperature Compensated Crystal Oscillator). Возможность корректировки частоты внешним управляющим напряжением позволяет при необходимости еще больше повысить стабильность генерируемой частоты. Генераторы, управляемые напряжением применяются в системах фазовой автоматической подстройки частоты (ФАПЧ), частотной модуляции (ЧМ), импульсно-кодовой модуляции (ИКМ).

Для многих разработчиков могут представлять интерес керамические резонаторы Geyer Electronic серий KX-ZTT, KX-ZTA, KX-XTB.

С помощью рисунка 3 можно легко сравнить габаритные размеры разных серий кварцевых резонаторов, генераторов и керамических резонаторов Geyer Electronic.