Изменение крутизны полевого транзистора

Полевые транзисторы с изолированным затвором (МДП-транзисторы)

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri

Задачи на транзисторы с решением

Задачи на транзисторы никак не получиться решать без знания теории. Сначала рекомендуем ознакомиться с ней, а уже потом приступать к практике.

Задача №1 на полевой транзистор

Условие

У полевого транзистора с управляющим р-n переходом максимальный ток стока равен 1мА, а напряжение отсечки – 4В. Какой ток будет протекать при обратном напряжении смещения затвор-исток, равном 2В? Чему равна крутизна и максимальная крутизна в этом случае?

Решение

Ток стока можно найти из выражения:

Выражение для крутизны характеристики полевого транзистора:

Максимальная крутизна:

Ответ: 0,25А; 0,25 мА/В; 0,5 мА/В.

Задача №2 на усилитель на транзисторах

Условие

В усилительном каскаде с общим истоком сопротивление нагрузки равно 20 кОм. Эффективное входное сопротивление полевого транзистора составляет 20 кОм, а рабочая крутизна – 2 мА/В. Определите коэффициент усиления каскада.

Решение

Вычислим сначала результирующее сопротивление нагрузки:

Коэффициент усиления каскада:

Ответ: 20.

Задача №3 на усилитель на транзисторе

Условие

В усилителе, показанном на схеме, при напряжении затвор-исток, равном 2В, ток стока равен 1 мА. Определите сопротивление резистора Rи, если падением напряжение IзRз можно пренебречь. Найдите напряжение Ec, если Rи=10 кОм, Uси=4 В.

Решение

Сопротивление Rи можно найти по закону Ома:

Напряжение источника питания равно:

Ответ: 2 кОм; 16 В.

Задача №4 на полевой транзистор

Условие

Полевой транзистор с управляющим p-n переходом имеет следующие характеристики при температуре 25оС: начальный ток стока IСн = 10 мА, напряжение отсечки U0 = -2 В. Оценить, на сколько процентов изменится (увеличится или уменьшится) ток стока в пологой области выходной ВАХ, если между затвором и истоком поддерживать напряжение Uзи = -0,5 В, а температуру поднять до 85 градусов Цельсия.

Решение

Изменение начального тока стока ПТ с управляющим р-n переходом может быть оценено по приближенной формуле:

Smax следует подставлять в мА/В, а Iсн – в мА, чтобы результат получился в мА. В относительных величинах:

С ростом температуры напряжение отсечки всегда возрастает по модулю, а начальный ток стока убывает при Uо > 0,6 В и возрастает при Uо < 0,6 В.

Так как в рассматриваемом случае напряжение отсечки более 0,6, то начальный ток стока должен уменьшаться при росте температуры.

Максимальная крутизна при заданном напряжении затвор-исток:

Таким образом, уменьшение тока стока составит:

Ответ: ток уменьшиться на 31%.

Задача №5 на полевой транзистор

Условие

Полевой транзистор с управляющим p-n-переходом, имеющим ICmax = 2 мА и Smax=2 мА/В, включен в усилительный каскад по схеме с общим истоком. Сопротивление резистора нагрузки Rн=10 кОм. Определить коэффициент усиления по напряжению, если UЗИ = — 1 В.

Решение

Найдем напряжение отсечки:

Определим крутизну транзистора при напряжении затвор-исток, равном -1В:

Коэффициент усиления по напряжению равен:

Ответ: 10

Крутизна — характеристика — триод

Крутизна характеристики триодов в зависимости от назначения лежит в пределах от 1 до 50 мА / В. Большинство маломощных триодов имеет крутизну от 1 до 10 мА / В.

Крутизна характеристики триода зависит от эмиссионной способности катода и от особенностей конструкции лампы.

Построение семейства анодных характеристик по семейству анодно-сеточиых характеристик.

Крутизна характеристики триодов в зависимости от их назначения лежит в пределах от 1 до 50 мА / В. Большинство маломощных триодов, предназначенных для усиления сигналов, имеет крутизну от 1 до 10 мА / В.

Крутизна характеристики триодов в зависимости от назначения лежит в пределах от 1 до 50 мА / В. Большинство маломощных триодов имеет крутизну от 1 до 10 мА / В.

Семейство анодных характеристик.| Определение параметров триода.

Крутизна характеристики триода представляет собой отношение изменения анодного тока к вызвавшему его изменению напряжения на управляющей сетке лампы при постоянном анодном напряжении.

Uc-7 в крутизна характеристики S триода 6С1П равна 2 25 ма / в, а внутреннее сопротивление переменному току Rt 11 6 ком.

Корректирование значения крутизны характеристики триода может быть осуществлено либо за счет изменения расстояния сетка — катод, либо изменением активной длины катода. В лампах с оксидными подогревными катодами изменение величины крутизны в пределах 10 — 15 % может быть достигнуто изменением длины оксидного покрытия. При этом следует исходить из того, что величина крутизны прямо пропорциональна активной длине катода.

Что называется крутизной характеристики триода.

Из сравнения ( 9 — 8) и ( 9 — 9) видно, что матрица Y ( не имеет симметрии относительно главной диагонали, причем нарушение симметрии вызвано наличием второй матрицы, отличные от нуля элементы которой равны крутизне S характеристики триода.

Продолжая эти рассуждения, убедимся, что в цепи анода сила тока / а, как показано на кривой Б, изменяется с частотой изменения напряжения на сетке. Амплитуда колебаний анодной силы тока зависит от крутизны характеристики триода и амплитуды напряжения, подаваемого на сетку.

Можно также вывести и использовать в особых случаях и другие константы, однако наиболее важными являются два определенных выше параметра. Они аналогичны двум динамическим характеристикам триода: kq0 — крутизне характеристики триода, kp0 — коэффициенту усиления.

ЭНИМС, которая имеет плавный диапазон настройки усилителя от 25 до 110 гц. Нулевой двойной Т — четырехполюсник с разделенными первичными и вторичной цепочками подключен к аноду усилительной лампы без катодного повторителя. Крутизна характеристики разделяющих триодов в рабочей точке равна Sp s 2 0 male.

Крутизна характеризует возможность управления анодным током изменением напряжения на управляющей сетке. Крутизна характеристики возрастает с уменьшением расстояния сетка — катод и увеличением площади катода и его эмиссионной способности. Обычно крутизна характеристики триода с термоэлектронным катодом не превышает 10 — 30 мА / В. Внутреннее сопротивление тем меньше, чем меньше расстояние катод-анод и чем менее плотно прилегают друг к другу витки управляющей сетки.

Усилители

Усилители крутизны

Усилитель крутизны ( г м усилитель) выдает ток , пропорционального его входное напряжение. В сетевом анализе усилитель крутизны определяется как источник тока, управляемый напряжением ( VCCS ). Обычно эти усилители устанавливаются в каскодной конфигурации, что улучшает частотную характеристику.

Усилители сопротивления

Transresistance усилитель выдает напряжение , пропорциональный его входной ток. Трансрезистивный усилитель часто называют трансимпедансным усилителем , особенно производителями полупроводников.

Термин для усилителя сопротивления в сетевом анализе — это источник напряжения, управляемый током ( CCVS ).

Базовый усилитель инвертирующего сопротивления может быть построен из операционного усилителя и одного резистора. Просто подключите резистор между выходом и инвертирующим входом операционного усилителя и подключите неинвертирующий вход к земле. Тогда выходное напряжение будет пропорционально входному току на инвертирующем входе, уменьшаясь с увеличением входного тока и наоборот.

Для усиления сигнального тока от фотодиодов на приемном конце сверхвысокоскоростных оптоволоконных линий широко используются специальные микросхемы трансрезисторных (трансимпедансных) усилителей.

Операционные усилители крутизны

Операционный усилитель крутизны (ОТ) является интегральной схемой , которая может функционировать в качестве усилителя крутизны. Обычно они имеют вход, позволяющий контролировать крутизну.

Идеальный источник тока, управляемый напряжением

Крутизна (передаточная проводимость) S{\displaystyle S} — единственная характеристика идеального источника тока, управляемого напряжением (ИТУН) и не зависит от величины тока. Выходной ток ИТУН Io{\displaystyle I_{o}} связан с входным напряжением Ui{\displaystyle U_{i}} соотношением: Io=SUi{\displaystyle I_{o}=SU_{i}}. Входной и выходной импедансы ИТУН равны бесконечности, это означает, что при любом входном напряжении входной ток равен нулю и выходной ток не зависит от напряжения на выходе.

Идеальный ИТУН физически нереализуем, ближайший реальный эквивалент идеального ИТУН — , или операционный усилитель крутизны — линейный источник биполярного (и втекающего, и вытекающего) тока, управляемый дифференциальным напряжением. Типичный прибор этого типа передаёт в нагрузку ток −10…+10 мА при изменении входного напряжения в пределах −100…+100 мкВ, что соответствует постоянной крутизне в 100 См.

Детали пробника

PA1 — микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 — СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 — МЛТ-0,25, С2-23 и другие. Переключатели SA1 — 3П12НПМ, 12П3Н ,ПГ2, ПГ3, П2К, SB1 — П2К. Тумблеры SA2 — SA4 — МТ-1, П1Т-1-1 и другие. Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II — 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.

Транзисторы VT1 — КТ315, КТ3102, VT2, VT3 — КТ801А, КТ801Б, VT4 — КТ805Б и другие, диоды VD1, VD2 — КД522, КД521, VD4-VD7 — КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 — К555ЛН1, К155ЛН1.

В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.

Как проверить полевой транзистор мультиметром и специальным тестером

Автор С Косенко из Воронежа в журнале Радио №1 за 2005 год показал свою разработку прибора проверки полевых транзисторов. Его имя: ППТ-01. Он объяснил принципы его работы, сборки, наладки, эксплуатации доступным языком.

Новичкам это все должно быть интересно, советую читать такие журналы и больше экспериментировать. Вам нужен практический опыт.

Сейчас подобные приборы выпускаются промышленным способом. Они позволяют проверять транзисторы, тиристоры, симисторы и другие электронные компоненты, точно узнать каждый параметр.

Доступная цена и широкие возможности этих тестеров обеспечивают их популярность. Ведь вся проверка сводится к установке выводов полупроводника в контактные гнезда и нажатию кнопки: результат автоматически отображается на дисплее.

Однако все эти операции вполне можно выполнить обычным цифровым мультиметром или аналоговым стрелочным тестером. Для этого нам потребуется посмотреть заводскую маркировку и найти по ней технические характеристики, определиться с конструкцией (JFET или MOSFET) и проводимостью канала.

Затем нужно вспомнить устройство своего мультиметра или тестера, перевести его в режим прозвонки либо измерения сопротивлений (для аналоговых приборов).

На моем карманном MESTEK MT-102 плюс присутствует на красном щупе, а минус — на черном. У вас скорее всего аналогично, но проверьте. Знак дисплея 0L (или 1 на других моделях) означает величину сопротивления (∞), которая превышает предназначенный диапазон измерения.

Проверку выполняем двумя этапами, последовательно соблюдая очередь:

  1. оцениваем исправность цепи сток-исток или, более точно, встроенного диода;
  2. анализируем открытие и закрытие выходной цепи при подаче управляющего сигнала.

Режим проверки №1

Перед началом работы кратковременно зашунтируйте все выводы полевика. Этим действием убирается возможный потенциал на его электродах, который может помешать замеру.

Результаты измерений на табло показываю для исправного мосфета. У поврежденного переходы будут отличаться: пробиты или оборваны.

На картинке показываю два измерения для n-канального транзистора. Схему его собрата с p-каналом привел для образца в правом нижнем углу. Действия для него аналогичны, а результат зависит от проводимости.

При первом замере ставим красный щуп с потенциалом плюса на сток, а черный на исток. Если диод исправен, то показания на приборе будут порядка 400-600. Это величина падения напряжения в милливольтах. Таким способом мультиметр в режиме прозвонки оценивает состояние полупроводникового перехода p-n полярности.

Для второго замера меняем щупы местами. Диод закрыт, его огромное сопротивление показывается как 0L.

Очередность этих замеров можно произвольно изменять.

Проверка мосфета положительной проводимости проводится аналогично, а индикацию на табло вам подскажет направление встроенного диода на рисунке.

Режим проверки №2

Оставляем черный щуп на истоке, а красный переставляем на затвор. Этим действием мы подаем ему положительный потенциал с мультиметра. На табло будет отображаться 0L, но транзистор должен открыться.

Проверяем открытие перестановкой красного щупа на сток. Изменение показаний на табло (единицы или десятки) станет достоверной информацией об его открытии. В этом можно убедиться, поменяв щупы между стоком и истоком. Показания останутся примерно в тех же пределах.

Теперь потребуется закрыть мосфет. Смотрим на замер №3: красный щуп ставим на исток, черный — затвор. Показание 0L.

Логика проверки p-канального типа полевика аналогична. Только надо помнить, что он открывается подачей отрицательного напряжения на затвор относительно истока, то есть «прижимается к земле».

Убедившись в исправности встроенного диода, открытии и закрытии силового перехода сток-исток, можно сделать вывод об исправности МДП транзистора.

Однако описанный метод не во всех случаях может обеспечить достоверные результаты. И дело здесь кроется в конструкции вашего мультиметра. Его выходного напряжения может просто не хватить для подачи отпирающего или запирающего потенциала на затвор.

Поэтому более достоверную проверку выполняют двумя мультиметрами:

  • одним контролируют состояние перехода сток-исток;
  • вторым управляют потенциалом на затворе.

Естественно, что заменить один из мультиметров можно самодельным источником напряжения, например, двумя батарейками АА (3 вольта) или омметром с предварительно оцененными характеристиками.

Принцип таких измерений показывает в своем видеоролике Дмитрий Гильмутдинов. Рекомендую посмотреть.

https://youtube.com/watch?v=lBmP8mXVtSQ

Мощные стабилизаторы

Некоторые устройства (приемопередатчики, эхолоты, модули GSM, схемы с FPGA) нуждаются в довольно мощном и в то же время малошумящем источнике питания, поэтому для их питания, если нужна высокая энергоэффективность, обычно используют импульсный преобразователь с мощным LDO-стабилизатором на выходе. Учитывая обычно небольшое падение напряжения на канале такого стабилизатора, даже миниатюрная микросхема в корпусе DFN размером 3х3 мм способна без перегрева качественно стабилизировать напряжение при токе до нескольких ампер.

Одни из лучших в этой области – LD39050 (ток нагрузки до 0,5 А), LD39100 (до 1 А) и LD39200 (до 2 А) (рисунок 6). При значении падения напряжения менее 200 мВ они имеют превосходные характеристики – подавление пульсаций на критичных для мощных устройств частотах до 1 кГц достигает 70 дБ, а шум на выходе не превышает 100 мкВ (для LD39200 при токе нагрузки 10 мА – всего 24 мкВ, микросхема имеет промежуточный RC-фильтр). Микросхемы имеют значительный запас по току – у LD39050 ограничение тока происходит на уровне 0,8 А, у LD39100 – 2,5 А, а у LD39200 – 3,5 А. Это позволяет схеме выдерживать кратковременные значительные перегрузки. В дополнение к перечисленному LD39200 имеет защиту от обратного тока – когда выходное напряжение по какой-либо причине выше входного и ток начинает течь через паразитный диод регулирующего транзистора, микросхема переходит в режим ограничения тока. А в выключенном состоянии, при нулевом уровне на входе Enable, и если выходное напряжение больше нуля, LD39200 разряжает выходные конденсаторы небольшим током порядка нескольких микроампер.

Все микросхемы имеют выход Power Good для информирования управляющего микроконтроллера – как только напряжение на выходе превысит 0,92*VOUT – транзистор на этом выходе закрывается и внешняя подтяжка устанавливает высокий логический уровень. Откроется транзистор только после того, как выходное напряжение снизится примерно до 0,80*VOUT, сгенерировав тем самым прерывание для микроконтроллера. Выход представляет собой открытый коллектор, напряжение подтяжки – до 7 В, рекомендуемое сопротивление резистора подтяжки – 100…1000 кОм.

Как и все мощные LDO-стабилизаторы, эти микросхемы предъявляют повышенные требования к трассировке печатной платы – входной и выходной конденсаторы должны быть расположены не далее 10 мм от выводов микросхем. Для улучшения теплоотвода необходимо предусмотреть под центральным контактом микросхемы полигон максимально возможной ширины, который через переходные отверстия соединяется со сплошной землей на нижнем слое.

Для стабильной работы микросхемам необходим выходной конденсатор емкостью 1…22 мкФ, его ESR для LD39050 должен быть в пределах 0,05…0,8 Ом, для LD39100 – 0,05…0,15 Ом. LD39200 менее требовательна – ей достаточно конденсатора с ESR 0,05…1,2 Ом. Рекомендуется использовать входной и выходной конденсаторы емкостью 1 мкФ, максимальная емкость входного конденсатора не ограничена.

Полевые транзисторы малой мощности

Предельный ток стока полевого транзистора (ток насыщения) пропорционален не экспоненте, а квадрату эффективного управляющего напряжения Ueff{\displaystyle U_{eff}} (разнице между напряжением затвор-исток и пороговым напряжением). Поэтому крутизна транзистора пропорциональна эффективному управляющему напряжению:

S=KUeff{\displaystyle S=KU_{eff}},
где K{\displaystyle K} — некоторый коэффициент, имеет размерность А/В2.

Фактическая крутизна маломощных дискретных транзисторов измеряется единицами или десятками мСм. Не зависящая от выбора рабочей точки величина K{\displaystyle K} — удельная крутизна полевого транзистора — определяется геометрическими размерами канала, удельной ёмкостью затвора и подвижностью носителей заряда в канале. Последняя, в свою очередь, убывает с ростом температуры кристалла. Относительный коэффициент крутизны — удельная крутизна условного транзистора, ширина и длина затвора которого равны — составляет примерно 20…60 мкА/В2 у дискретных n-канальных транзисторов и 100…120 мкА/В2 у низковольтных интегральных n-канальных транзисторов. Относительный коэффициент крутизны p-канальных приборов примерно в 2…3 раза ниже из-за меньшей подвижности носителей заряда в канале.

Достоинства и недостатки полевых транзисторов

Использование полевых транзисторов благодаря их универсальным характеристикам позволило обойти другие виды транзисторов. Они широко применяются для интегральной схемы в качестве выключателя.

Достоинства:

  • каскады детали расходуют малое количество энергии;
  • показатели усиления превышают, значения других аналогичных устройств;
  • достижение высокой помехоустойчивости осуществляется за счет того, что отсутствует ток в затворе;
  • обладают более высокой скоростью включения и выключения, работают с недоступными для других транзисторов частотами.

Недостатки:

  • менее устойчивы к высоким температурам, которые приводят к разрушению;
  • на частотах более 1,5 ГГц, количество потребляемой энергии стремительно увеличивается;
  • чувствительны к статическим видам электричества.

Благодаря характеристикам, которыми обладают полупроводниковые материалы, взятые в качестве основы для полевого транзистора, позволяют использовать устройство в бытовой и производственной сфере. Полевыми транзисторами оснащается различная бытовая техника, которая используется современным человеком.

Как он работает

Полевой транзистор включает нескольких составных элементов — истока (источника носителя заряда наподобие эмиттера на биполярном элементе), стока (приемника заряда по аналогии с коллектором) и затвора (управляющего электрода наподобие сетки в лампах или базы). Работа первых двух очевидна и состоит в генерации и приеме носителя электрозаряда, среди которых электроны и дырки. Затвор же нужен в первую очередь для управления электротоком, который протекает через ПТ. То есть, получается классического вида триод с катодом, анодом и электродом управляющего типа.

Когда происходит подача напряжения на затвор, возникает электрополе, которое изменяет ширину определенных переходов и влияет на параметр электротока, протекающего от истока к стоку. Если управляющее напряжение отсутствует, то ничто не будет препятствовать потоку носителей заряда в виде электронов. Когда напряжение управления повышается, то канал, по которому движутся электроны или дырки, наоборот, уменьшается, а при достижении некоего предела закрывается совсем, и полевой транзистор входит в так называемый режим отсечки. Именно эта характеристика ПТ делает возможным их применение в качестве ключей.


Подключение нагрузки к электротранзистору для его открытия

Свойства усиления электротока этого радиокомпонента обусловлены тем, что сильный электрический ток, который протекает от истока к стоку, повторяет все динамические характеристика напряжения, прикладываемого к затвору. Другим языком, с выхода этого усилителя берется абсолютно такой же по форме сигнал, как и на электроде управления, только более сильный.

Строение ПТ (униполярного транзистора) немного отличается от биполярного. А именно тем, что электричество в нем пере пересекает определенные переходные зоны. Электрозаряды совершают движение по участку регуляции, который называется затвором. Его пропускная способность регулируется параметром напряжения.


Виды электротранзисторов полевого типа с маркировкой

Важно! Пространство зон транзистора под действием электрического поля уменьшается и увеличивается. Исходя из этого изменяется количество носителей зарядов — от их полного отсутствия до переизбытка

Что представляет собой полевой транзистор

Полевые транзисторы — это трех или четырех контактные устройства, в которых ток, идущий на два контакта может регулироваться посредством напряжения электрополя  третьего контакта.  на двух контактах регулируется напряжением электрического поля на третьем. В результате этого подобные транзисторы называются полевыми.

Название расположенных на устройстве контактов и их функции:

  • Истоки – контакты с входящим электрическим током, которые находится на участке n;
  • Стоки – контакты с исходящим, обработанным током, которые находятся  на участке n;
  • Затворы – контакты, находящиеся на участке р, посредством изменения напряжения на котором, выполняется регулировка пропускной способности на устройстве.

Полевые транзисторы с  n-p переходами – особые виды, позволяющие управлять током. От простых они, как правило, отличаются тем, через них протекает ток, без пересечения участка р-n переходов, участка который образуется на границах этих двух зон. Размеры р-n участка являются регулируемыми.

Настройка испытателя полевых транзисторов

Налаживание прибора практически не требуется. Правильно собранный преобразователь, из исправных деталей, начинает работать сразу, выходное напряжение 15 В устанавливают подстроечным резистором R4 контролируя напряжение вольтметром.

Затем движки резисторов R1, R2 устанавливают в нижнее по схеме положение, что соответствует нулевым напряжениям. Переключатель SA3 переводят в положение 1,5 В, а SA2 в положение Uзи. Подключив контрольный вольтметр к движку R1 перемещают его контролируя показание PA1 по контрольному вольтметру и если оно отличается подбирают сопротивление резистора R3. После подбора резистора R3 переключают SA3 в положение 15 В и далее перемещают движок R3 контролируя напряжение и если оно также не соответствует подбирают R4. Таким образом настраивают внутренний вольтметр прибора. После всех настроек закрывают заднюю крышку, прибор готов к работе.


Как показывает практика, для радиолюбителя важны следующие положения:

1. Проверить исправность ПТ. Для этого обычно достаточно убедиться, что параметры его стабильны, не «плывут» и находятся в пределах справочных данных.

2. Выбрать по определенным характеристикам из имеющихся у радиолюбителя всего нескольких экземпляров ПТ те, что больше подходят для применения в собираемой схеме. Обычно здесь работает качественный принцип «больше — меньше».

Например, нужен полевой транзистор с большей S или меньшим напряжением отсечки. И из нескольких экземпляров выбирают тот, у которого лучше (больше или меньше) выбранный показател. Таким образом, высокая точность измеряемых параметров на практике часто не столь важна, как можно было бы думать. Тем не менее, предлагаемый прибор позволяет с достаточно высокой точностью проверить работоспособность и важнейшие характеристики ПТ.

Полевые транзисторы с управляющим p-n переходом

Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic. Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.

При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.

Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.

Значение напряжения Uзи, при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап

Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Полевой транзистор характеризуется следующей ВАХ:

Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи| < Uзап ток стока Iс возрастает с увеличением Uси. При повышении напряжения сток — исток до Uси = Uзап — |Uзи| происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс. Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.

На ВАХ Iс = f(Uзи) показано напряжение Uзап. Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8…10-9 А, поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010…1013 Ом. Кроме того, они отличаются малыми шумами и технологичностью изготовления.

Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:

Детали пробника


PA1 — микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 — СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 — МЛТ-0,25, С2-23 и другие. Переключатели SA1 — 3П12НПМ, 12П3Н ,ПГ2, ПГ3, П2К, SB1 — П2К. Тумблеры SA2 — SA4 — МТ-1, П1Т-1-1 и другие. Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II — 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.

Транзисторы VT1 — КТ315, КТ3102, VT2, VT3 — КТ801А, КТ801Б, VT4 — КТ805Б и другие, диоды VD1, VD2 — КД522, КД521, VD4-VD7 — КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 — К555ЛН1, К155ЛН1.

В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.

↑ Принципиальная схема

Схема предельно проста, но имеет несколько изюминок. Первая — измерение при фиксированном токе эмиттера (фактически и коллектора), а не базы (идея из журнала «Радио», взята с датагорского форума). Это позволило поставить транзисторы в одинаковые условия и выбрать режим по току, в котором будут работать эти транзисторы.

Вторая — регулируемый стабилитрон на TL431 позволяет плавно установить ток, с обычными стабилитронами это невозможно, да и подбор пар «стабилитрон+резистор в цепи эмиттера» вызвал бы проблемы. Третья — двухканальная схема и отдельные панельки для P-N-P и N-P-N транзисторов, что упрощает коммутацию, позволяет моментально сравнивать опытную пару и проверять идентичность, изменяя напряжение питания.

Полевые транзисторы малой мощности[править | править код]

Предельный ток стока полевого транзистора (ток насыщения) пропорционален не экспоненте, а квадрату эффективного управляющего напряжения Ueff{\displaystyle U_{eff}} (разнице между напряжением затвор-исток и пороговым напряжением). Поэтому крутизна транзистора пропорциональна эффективному управляющему напряжению:

S=KUeff{\displaystyle S=KU_{eff}},
где K{\displaystyle K} — некоторый коэффициент, имеет размерность А/В2.

Фактическая крутизна маломощных дискретных транзисторов измеряется единицами или десятками мСм. Не зависящая от выбора рабочей точки величина K{\displaystyle K} — удельная крутизна полевого транзистора — определяется геометрическими размерами канала, удельной ёмкостью затвора и подвижностью носителей заряда в канале. Последняя, в свою очередь, убывает с ростом температуры кристалла. Относительный коэффициент крутизны — удельная крутизна условного транзистора, ширина и длина затвора которого равны — составляет примерно 20…60 мкА/В2 у дискретных n-канальных транзисторов и 100…120 мкА/В2 у низковольтных интегральных n-канальных транзисторов. Относительный коэффициент крутизны p-канальных приборов примерно в 2…3 раза ниже из-за меньшей подвижности носителей заряда в канале.