Когда появилось электричество в мире: кто его изобрел?

История открытия

В начале 18 века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки.

Важно! Ученый Б. Франклин первым предположил, что существуют положительные и отрицательные заряды.. Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами

Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод, действие которого пояснялось возникновением разности напряжений

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод, действие которого пояснялось возникновением разности напряжений.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым законе электромагнитной индукции.

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. — ученый Л. Гальвани открыл движение зарядов по проводникам, т.е. электрический ток;
  • 1800 г. – представлен генератор тока А. Вольтом;
  • 1802 г. — Петров открыл электродугу;
  • 1827 г. — Дж. Генри сконструировал изоляцию проводов;
  • 1832 г. — член академии Петербурга Шиллинг показал электрический телеграф;
  • 1834 г. — академик Якоби создал электродвигатель;
  • 1836 год — С. Морзе запатентовал телеграф;
  • 1847 г. — Сименс предложил резиновый материал для изоляции проводов;
  • 1850 год — Якоби изобрел буквопечатающий телеграф;
  • 1866 г. — Сименс предложил динамо-машину;
  • 1872 г. — А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить;
  • 1876 г — изобретен телефон;
  • 1879 год — Эдисон разработал систему электроосвещения, используемую до сих пор;
  • 1890 год — стал стартовым относительно широкого применения электроприборов в быту;
  • 1892 г. — появились первые бытовые приборы, используемые хозяйками на кухне;

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд. С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В

Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

До Великой Отечественной войны

Благодаря успешному выполнению плана ГОЭЛРО и последующих пятилетних планов развития народного хозяйства суммарная мощность установленных электростанций к 1940 г. составляла 11,2 миллиона кВт*ч, а производство электрической энергии — 48,3 миллиарда кВт*ч. Электростанций, мощность которых превышала 100 тысяч кВт*час, было 20.

Также ввели в эксплуатацию 2 электростанции мощностью 350 тысяч кВт*час каждая. Общая протяженность линий электропередач составляла более 23 тысяч км. Развивались и объединялись энергосистемы в стране. В 1942 г. для организации работы энергосистем в Свердловской, Пермской и Челябинских областях было создано первое ОДУ — Объединенное диспетчерское управление Урала.

Начавшаяся Великая Отечественная война и последующая оккупация врагом значительной территории Советского союза, на которой были расположены большие производственные мощности, отрицательно сказались на выработке электроэнергии. Общий объем вырабатываемой электроэнергии в 1942 г. составил 29,1 миллиарда кВт*ч.

Руководство Советского Союза понимало стратегическую важность энергоснабжения. Энергетики работали с риском для жизни и восстанавливали подачу электрической энергии

Одним из многочисленных примеров такой самоотверженности является восстановление подачи электричества в блокадный Ленинград.

В осажденном Ленинграде советским энергетикам удалось проложить подводный кабель напряжением 10 кВ по дну Ладожского озера длиной 22 км. Подводная кабельная линия была проложена за 48 дней. Кабельная линия проходила также по болотам и лесам от Волховской ГЭС. Длина этого участка составляла 130 км.

«Линия жизни» проработала с 23 сентября 1942 г. до 15 мая 1944 г. За это время по ней было передано электроэнергии более чем на 25 миллионов кВт*ч. Это дало возможность запустить производство на промышленных предприятиях, восстановить движение трамваев и обеспечить электроснабжение в жилых домах.

После освобождения от фашистов захваченных территорий в первую очередь на них восстанавливались электростанции. Крупные города Советского Союза обеспечивались электроэнергией, которую вырабатывали мобильные электростанции, размещенные на специальных энергопоездах.

Такие энергопоезда начали работать с 1943 г. Первая передвижная электростанция обеспечивала током Сталинград, а впоследствии они работали в других освобожденных советских городах. Это позволило обеспечить к 1945 г. выработку электроэнергии в объеме 43,3 миллиарда кВт*ч, что было сопоставимо с довоенными показателями.

Лампа накаливания Лодыгина

Первые отечественные опыты, связанные с городским электрическим освещением, были проведены Александром Лодыгиным в Санкт-Петербурге в 1873 году. Именно он изобрел лампу накаливания. Однако попытка ввести новинку в массовую эксплуатацию оказалась неудачной – ей не удалось отнять нишу у повсеместно распространенных газовых фонарей. Патент на вольфрамовую нить был продан зарубежной компании General Electric.

Российские энтузиасты, тем не менее, не растеряли задора. Незадолго до Первой мировой войны «Общество электрического освещения» получило право на производство ламп накаливания. Грандиозные планы не осуществились из-за кровопролития, падения экономики и всеобщей разрухи. К 1917 году лампы накаливания были только в богатых поместьях, успешных магазинах и т. д. В целом даже в двух столицах такое освещение охватывало лишь треть зданий

К электричеству масса людей относилась как к невероятной роскоши, и каждая новая освещенная витрина привлекала внимание тысяч горожан

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту. Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы)

Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

переменный или постоянный ток

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику

Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Это связано с тем, что все тела состоят из заряженных частиц. Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой. Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в космос. Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

https://youtube.com/watch?v=pb_U_jbkrXk

Кто изобрел электричество

Первые ГЭС

Отечественная история электричества в царский период ознаменовалась и первыми небольшими гидроэлектростанциями. Самая ранняя появилась на Зыряновском руднике в Алтайских горах. Большая известность обрушилась на станцию в Петербурге на реке Большой Охте. Одним из ее строителей был все тот же Роберт Классон. Кисловодская гидроэлектростанция «Белый уголь» служила источником энергии для 400 уличных фонарей, трамвайных линий и насосов на минеральных водах.

К 1913 году на разных российских речках были уже тысячи ГЭС небольшого размера. По подсчетам специалистов их общая мощность составляла 19 мегаватт. Самой крупной ГЭС была Гиндукушская станция в Туркестане (она работает и сегодня). При этом накануне Первой мировой войны сложилась заметная тенденция: в центральных губерниях упор делался на строительство тепловых станций, а в далекой провинции – на силу воды. История создания электричества для российских городов началась с больших вложений иностранцев. Даже оборудование для станций почти все было зарубежным. Например, турбины закупали отовсюду – от Австро-Венгрии до США.

В период 1900-1914 гг. темп российской электрификации являлся одним из самых высоких во всем мире. В то же время существовал заметный перекос. Электричество поставлялось в основном для промышленности, а вот спрос на бытовые приборы оставался достаточно низким. Ключевая же проблема продолжала заключаться в отсутствии централизованного плана модернизации страны. Движение вперед осуществлялось частными компаниями, при этом в массе своей – иностранными. Немцы и бельгийцы в основном финансировали проекты в двух столицах и старались не рисковать своими средствами в далекой российской провинции.

Альтернативные источники энергии

К данной категории источников энергии принято относить солнечные лучи, ветер, земельные недра и т. д. Особенно распространены различные генераторы, ориентированные на аккумуляцию и преобразование в электричество солнечной энергии. Подобные установки привлекательны тем, что их может использовать любой потребитель в объемах, требуемых для снабжения его дома. Впрочем, широкому распространению подобных генераторов мешает высокая стоимость оборудования, а также нюансы в эксплуатации, обусловленные зависимостью рабочих фотоэлементов от интенсивности света.

На уровне крупных энергетических компаний активно развиваются ветряные альтернативные источники электричества. Уже сегодня целый ряд стран использует программы постепенного перехода на этот вид энергообеспечения. Впрочем, и в данном направлении есть свои препятствия, обусловленные маломощностью генераторов при высокой стоимости. Относительно новым альтернативным источником энергии является естественное тепло Земли. В данном случае станции преобразуют тепловую энергию, полученную из глубин подземных каналов.

Электричество в природе

Природное электричество представлено следующими явлениями:

1.Атмосферное электричество (ветвистые и шаровые молнии); 2.Электрические импульсы в нервной системе живых организмов; 3.Электрические заряды, используемые некоторыми видами скатов и морских рыб для защиты от опасности и добычи пищи.

Электричество в природе

Дальнейшая суть электричества связана с самим движением этих электронов в различных средах.материалах и условиях. Например действие обычной батарейки. В ней находятся химические вещества, которые взаимодействуя друг с другом. Они из одного своего состояния переходят в другое. Это происходит посредством перераспределения электронов между изменяющимися веществами внутри. И так работает со множество электрических явлений, процессов и взаимодействий. В итоге и получаем всё то разнообразиевзаимодействий. К примеру, обычная батарейка. В ней находятся различные химические вещества, переходят в другое, а сопутствующим процессом будет перераспределение электронов внутри. Если есть дисбаланс электрических зарядов, значит есть и сила, стремящаяся выровнять его. И эту самую силу используют в батарейке для питания различных электрических устройств.

Металлы — проводники электричества

Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.

Электромагнитные поля

Есть и другой пример, в котором проявляется суть электричества. Это взаимодействие электромагнитных полей. Вспомним, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, и оно воздействует на другие поля иных заряженных частиц. По такому принципу работает электродвигатель. Простыми словами — магнитные поля заставляют вращаться электрический мотор, а в этот момент по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.

Схематичное движение электрических зарядов с одного полюса на другой

Способ производства

Производство электроэнергии по источникам в России в 2016 г.

  • Природный газ: 521 788 ГВтч (47,9%)
  • Атомная промышленность: 196614 ГВтч (18,1%)
  • Гидроэнергия: 186 640 ГВтч (17,1%)
  • Уголь: 171443 ГВтч (15,7%)
  • Нефть: 10968 ГВтч (1,0%)
  • Солнечная энергия: 462 ГВтч (0,0%)
  • Геотермальная энергия: 446 ГВтч (0,0%)
  • Ветер: 146 GWh (0.0%)
  • Отходы: 32 ГВтч (0,0%)
Валовое производство электроэнергии источниками энергии в России (ТВтч)
Производство Экспорт Газ Уголь / Торф Ядерная Гидро
2004 г. 930 20 421 161 145 176
2008 г. 1,038 18 495 197 163 167
2008 г. 47,7% 19% 15,7% 16,1%
Примечание: Конечное использование (2008 г.) Россия 726 ТВтч.

По данным МЭА, валовое производство электроэнергии в России составило 1038 ТВтч в 2008 году и 930 ТВтч в 2004 году, что позволило занять 4-е место среди мировых производителей в 2008 году. Десять ведущих стран произвели 67% электроэнергии в 2008 году. Ведущими производителями были: 1) США 21,5% 2) Китай 17,1% 3) Япония 5,3% 4) Россия 5,1% 5) Индия 4,1% 6) Канада 3,2% 7) Германия 3,1% 8) Франция 2,8% 9) Бразилия 2,3% и 10) Южная Корея 2,2 %. Остальной мир произвел 33%.

Газ

Доля электроэнергии, работающей на природном газе, составила 48% от валового производства электроэнергии в России в 2008 г. (495 ТВтч / 1 038 ТВтч.

Уголь и торф

Доля угля и торфа в электроэнергии составила 19% от валового производства электроэнергии в России в 2008 г. (187 ТВтч / 1 038 ТВтч).

Атомная энергия

Кольская АЭС

В 2008 г. Российская Федерация была 4-й страной по производству электроэнергии на АЭС с 163 ТВтч (6% от общемирового). По данным МЭА, в 2008 году 15,7% электроэнергии в России было произведено на атомной электростанции.

Всего в 2009 г. в России имелся 31 ядерный реактор, а в 2008 г. установленная мощность — 23 ГВт.

Строительство и экспорт ядерных реакторов

В 2006 году Россия экспортировала ядерные реакторы в Армению, Болгарию, Чехию, Финляндию, Венгрию, Индию, Иран, Литву, Словацкую Республику и Украину. В России среднее время строительства составляло 1) 1965–1976 гг. 57 месяцев и 2) 1977–1993 гг. 72–89 месяцев, но четыре завода, которые были завершены с тех пор, заняли около 180 месяцев (15 лет) из-за увеличения оппозиция после аварии на Чернобыльской АЭС и политических изменений после 1992 года.

Гидроэнергетика

По состоянию на 2008 год гидроэлектростанции выработали 167 ТВтч при общей мощности 47 ГВт. Россия является 5-м по величине производителем гидроэнергетики в мире, на ее долю приходится 5,1% мировой гидроэнергетики. Использование других возобновляемых источников для производства электроэнергии в 2008 году было незначительным в Российской Федерации, согласно статистике МЭА по объему электроэнергии в 2008 году.

По состоянию на 2010 год Россия импортирует 17,5% от общего объема потребляемой электроэнергии, из которых около 90% приходится на Казахстан и Грузию. Интер РАО имеет монополию на импорт электроэнергии в страну.

История электричества

Давным-давно, в VII веке до нашей эры, греческий философ Фалес Милетский (624 – 545 гг. до н.э.) заметил, что потёртый о шерсть янтарь приобретает свойство притягивать лёгкие предметы. Что интересно, греки называли янтарь электроном, по имени звезды Электра из созвездия Тельца. С тех давних пор прошло больше двух тысячелетий и только в 1600 году английский физик Уильям Гилберт (1544 – 1603 гг.) издаёт книгу, в которой описывает свои опыты над магнитами и электрическими свойствами тел. Он заметил, что не только янтарь, но и ряд других тел после натирания обладают способностью притягивать мелкие лёгкие предметы. Отдавая честь янтарю, Уильям Гилберт назвал это явление электрическим (от латинского слова electricus – янтарный) и впервые ввёл термин «электричество». Под ним подразумевается совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. 

В последующие годы многие учёные занимались исследованием электричества. Они сделали большое количество открытий в этой области, благодаря которым человечество использует данный вид энергии. В память о заслугах отдельных учёных их фамилиями были названы некоторые единицы измерений. Среди них: итальянский физик, химик и физиолог Александро Вольта (1745 – 1827 гг.), французский физик, математик и естествоиспытатель Андре-Мари Ампер (1775 – 1836 гг.), немецкий физик Георг Симон Ом (1789 – 1854 гг.) и ряд других учёных. Благодаря таким людям, сейчас мы используем электричество для своего блага и удобства. 

Не всем известно, что к изучению электричества имел отношение Бенджамин Франклин (1706 – 1790 гг.). Большинство людей знают его как великую историческую личность, внёсшую огромный вклад в становление США (Соединённых Штатов Америки) как независимого государства. В память о политических заслугах Бенджамина Франклина установлены памятники, а на стодолларовых купюрах с 1914 года печатают его портрет. Как говорят: «Талантливый человек талантлив во всём». Оказывается, он был не только политиком, но ещё исследователем и изобретателем. Бенджамин Франклин ввёл понятие положительного и отрицательного заряда. Вот те самые «+» (плюсы) и «-» (минусы), которые в наше время можно увидеть на любой простой батарейке. Ещё он проводил исследования грозовых явлений и обнаружил присутствие электричества в воздухе, так называемое атмосферное электричество. В 1752 году Бенджамин Франклин изобрёл молниеотвод (в быту его чаще называют громоотвод, хотя к грому это устройство отношения не имеет). Металлический штырь, соединённый толстой проволокой с заземлителем, снимал во время грозы напряжённость электрического поля. В редких случаях удара молнии пропускал её через себя в землю. Это изобретение имело большое практическое значение. Теперь высокие здания, колокольни и т.п., оборудованные такими устройствами, могли больше не бояться молнии. 

От теории к точной науке

Закон Ома для неоднородного участка

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Закон взаимодействия зарядов

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.


Закон Кулона

Изобретение батареи

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Закон электрической цепи

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Электромагнитная индукция

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

История открытия


Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.

В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки.

Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод, действие которого пояснялось возникновением разности напряжений.


А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым законе электромагнитной индукции.

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. — ученый Л. Гальвани открыл движение зарядов по проводникам, т.е. электрический ток,
  • 1800 г. – представлен генератор тока А. Вольтом,
  • 1802 г. — Петров открыл электродугу,
  • 1827 г. — Дж. Генри сконструировал изоляцию проводов,
  • 1832 г. — член академии Петербурга Шиллинг показал электрический телеграф,
  • 1834 г. — академик Якоби создал электродвигатель,
  • 1836 год — С. Морзе запатентовал телеграф,
  • 1847 г. — Сименс предложил резиновый материал для изоляции проводов,
  • 1850 год — Якоби изобрел буквопечатающий телеграф,
  • 1866 г. — Сименс предложил динамо-машину,
  • 1872 г. — А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить,
  • 1876 г — изобретен телефон,
  • 1879 год — Эдисон разработал систему электроосвещения, используемую до сих пор,
  • 1890 год — стал стартовым относительно широкого применения электроприборов в быту,
  • 1892 г. — появились первые бытовые приборы, используемые хозяйками на кухне,

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд. С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В

Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Как ток заставляет работать электроприборы?

Но как же у тока получается запустить в работу электрические устройства? Для наглядного понимания возьмем за основу обычную лампу накаливания и вернемся к нашим маленьким частицам.

Когда электроны с невероятной скоростью проходят по спирали лампочки, они постоянно наталкиваются на атомы металла, из которых состоит спираль. Атомы раскачиваются, и их температура сильно поднимается. Таким образом, электрический ток нагревает спираль лампы до 3000 градусов, отчего она начинает светиться. Именно поэтому для спирали не подходит использование любого металла, потому что он просто будет плавиться из-за высокой температуры.

В современных устройствах — мобильных телефонах, телевизорах, микроволновых печах — задействованы более сложные схемы, но принцип остается таким же: из-за быстрого потока частиц атомы проводников нагреваются, отчего и выделяют энергию и запускают в работу приборы.