Разновидности приборов учета электроэнергии
Устройства для подсчета электроэнергии – это многофункциональные механизмы, которые могут отражать текущее положение данных, сохранять и передавать важную информацию. На сегодняшний день используют три разных варианта счетных механизмов.
Механические или индукционные приборы учета
Однофазные индукционные счетчики электроэнергии Классический тип устройств, который встречается чаще всего. Конструкция состоит из двух обычных катушек. Одна из них ограничивает данные переменного напряжения, предотвращая искажения и получая электрический ток. Вторая преобразует поток переменного напряжения.
Основные плюсы – простота в эксплуатации, долговечность устройств. Срок службы счетчиков подобного типа высокий, а стоимость – низкая. Минус – габариты механизма.
Электронные приборы учета
Модульный трехфазный электронный электросчетчик Устройства имеют более высокий уровень точности в подсчетах, но и цена их выше. Дополнительный плюс – возможность функционировать в нескольких режимах (например, утро и ночь, двух- и трехтарифные приборы).
Электронные счетчики преобразуют входящие аналоговые показатели в специальную цифровую кодировку, которые в свою очередь преобразуются небольшим микроконтроллером. Полученные данные можно увидеть на дисплее. Такие приборы стараются устанавливать все чаще, заменяя устаревшие механические модели.
Другие преимущества – компактный размер, возможность дистанционного контроля.
Гибридные приборы учета
Гибридный электросчетчик Являются средним вариантом между счетчика электронного и механического типа работы. С одной стороны – устройства оснащают цифровым дисплеем для удобства. С другой – используют классический индукционный способ получения и обработки данных.
Гибридные устройства устанавливают редко, предпочитая аналоговые или электронные механизмы.
Как рассчитать коэффициент трансформации
Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.
Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки – на ЭДС вторичной.
Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора
Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.
В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.
В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.
Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.
Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.
Есть несколько путей определения коэффициента трансформации:
путь непосредственного измерения напряжений вольтметрами;
методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);
по паспорту данного трансформатора.
Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).
Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.
Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).
Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь – подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.
В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.
Понятие о коэффициенте трансформации
Для произведения рационального контроля электроэнергии на крупных объектах используется специальное оборудование, снижающее мощность на выходах электросчетчика. Данные устройства не соединены напрямую с электросетью здания, что обозначает невозможность прямого включения высоковольтного напряжения к общей электросети. Отсюда следует, чтобы минимизировать возникновение неисправностей надо уменьшать мощность с помощью трансформаторного оборудования. В таком случае электросчетчики зафиксируют нагрузку, сниженную в десятки раз. Полученные таким образом результаты и будут КТ, а, чтобы определить настоящий расход электричества, следует умножить показания электросчетчика на используемый расчетный коэффициент.
Что делает трансформатор
У трансформатора много полезных и важных функций:
Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.
Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.
Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.
Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
- Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.
Классификация
Электросчетчики разделяются на одно- или многофазные, применяются такие устройства для сетей, где может быть переменное напряжение.
Например, однофазный счетчик, который установлен почти во всех жилых помещениях, функционирует только в диапазоне от 220 до 230 В, тогда как трехфазных также измеряет напряжение в пределах от 220 до 400 В.
Подробная схема классификации счетчиков Многие энергокомпании предоставляют возможность сэкономить на электричестве с помощью установки многотарифного счетчика. Такие устройства имеют две или более независимые шкалы, переход между ними осуществляется в определенное время.
Обычно ночью 1 кВт электроэнергии обходится значительно дешевле, но объемы ее потребления тоже сильно снижаются. Для экономии можно запрограммировать работу некоторых устройств, например, стиральной или посудомоечной машины на ночное время.
Существует 3 типа счетчиков:
- индукционные;
- электронные;
- бесконтактные.
Виды электросчетчиков
Существует огромное количество различных электросчетчиков. Однако их всех можно разбить на три основных вида:
- индукционные или механические;
- электронные;
- гибридные.
Механические устройства
Конструктивно индукционные счетчики выполнены следующим образом – между двух катушек, токовой и напряжения, находится алюминиевый диск, который механически связан со шкалой.
Принцип работы – ток, протекающий по катушкам, создает электромагнитное поле, которое заставляет вращаться диск. Он через червячную передачу передает свое вращение на механизм отсчета. Чем больший ток протекает через катушки, тем большая индуктивность электромагнитного поля, которое заставляет быстрее вращаться диск, а следственно и шкалу.
В классификации счетчиков индуктивные являются самыми неточными. Это обусловлено погрешностями, возникающими при преобразовании электромагнитного поля во вращение диска. А также довольно серьезные погрешности могут возникать и в механизме вращения шкалы.
Главным достоинством данного вида – низкая цена.
https://youtube.com/watch?v=CeRJLJm40mg
С электронным механизмом
Электронные приборы учета электроэнергии появились относительно недавно. Основаны они на измерении тока посредством аналоговых датчиков. Информация с датчиков поступает на микроконтроллер, где преобразуется и выводится на ЖК дисплей.
К достоинствам электронных относится:
- Небольшие размеры.
- Возможность настраивать несколько алгоритмов подсчета электроэнергии.
- Самый высокий класс точности среди других видов из-за отсутствия большого числа элементов при измерении.
- Возможность настроить систему АСКУЭ.
Главными недостатками являются высокая цена и большая чувствительность к скачкообразному изменению напряжения в сети.
Смешанные модели
Данный вид был создан с целью уменьшения цены на оборудование, которое можно было бы подключить в систему АСКУЭ. Данный вид нечувствителен к скачкам напряжения.
К недостаткам можно отнести большие размеры и невысокую точность по сравнению с электронными.
Определение и расчет коэффициента трансформации счетчика электроэнергии
Все приборы учета электроэнергии, которые рассчитаны на большие токи (от 100 А и выше) имеют в своем составе понижающие трансформаторы. Они уменьшают ток, поступающий непосредственно на измерительную часть. Одним из основных параметров для потребителя в этом случае является коэффициент трансформации счетчика электроэнергии. Он необходим для правильного снятия показаний с таких измерительных приборов.
Техническая характеристика коэффициента
Коэффициент трансформации – отношение токов нагрузки и электрического счетчика. В данном случае он всегда будет больше единицы, так как токи потребления превышают измерительные. При подсчете израсходованной электроэнергии, показания на циферблате или панели, умножаются на данный коэффициент. Получившееся значение является правильным количеством потребленных киловатт-часов.
А также трансформаторы имеют класс точности. Для оборудования учета электроэнергии он равен 0,2 или 0,5. Чем ниже значение класса, тем более высокая точность измерительных приборов.
Виды электросчетчиков
Существует огромное количество различных электросчетчиков. Однако их всех можно разбить на три основных вида:
Механические устройства
Конструктивно индукционные счетчики выполнены следующим образом – между двух катушек, токовой и напряжения, находится алюминиевый диск, который механически связан со шкалой.
Принцип работы – ток, протекающий по катушкам, создает электромагнитное поле, которое заставляет вращаться диск. Он через червячную передачу передает свое вращение на механизм отсчета. Чем больший ток протекает через катушки, тем большая индуктивность электромагнитного поля, которое заставляет быстрее вращаться диск, а следственно и шкалу.
В классификации счетчиков индуктивные являются самыми неточными. Это обусловлено погрешностями, возникающими при преобразовании электромагнитного поля во вращение диска. А также довольно серьезные погрешности могут возникать и в механизме вращения шкалы.
Главным достоинством данного вида – низкая цена.
С электронным механизмом
Электронные приборы учета электроэнергии появились относительно недавно. Основаны они на измерении тока посредством аналоговых датчиков. Информация с датчиков поступает на микроконтроллер, где преобразуется и выводится на ЖК дисплей.
К достоинствам электронных относится:
- Небольшие размеры.
- Возможность настраивать несколько алгоритмов подсчета электроэнергии.
- Самый высокий класс точности среди других видов из-за отсутствия большого числа элементов при измерении.
- Возможность настроить систему АСКУЭ.
Главными недостатками являются высокая цена и большая чувствительность к скачкообразному изменению напряжения в сети.
Смешанные модели
Гибридные приборы, как видно из названия, являются комбинацией компонентов индуктивных и электронных счетчиков. Измерительная часть у них взята от механических, а обработка и вывод показаний осуществляется с помощью микроконтроллера.
Данный вид был создан с целью уменьшения цены на оборудование, которое можно было бы подключить в систему АСКУЭ. Данный вид нечувствителен к скачкам напряжения.
К недостаткам можно отнести большие размеры и невысокую точность по сравнению с электронными.
Определение коэффициента трансформации
Как было сказано выше, при подсчете затраченной электроэнергии важно знать коэффициент трансформации счетчика. Информацию о нем можно найти как в паспорте на счетчик электроэнергии, так и на лицевой панели прибора
Иногда в электронных приборах его можно найти в меню. Обозначается он либо через знак деления, либо просто числом. Обычно это значения из ряда 10, 20, 30 и 40.
Но нередки случаи, когда паспорт на оборудование отсутствует. В этом случае коэффициент трансформации можно высчитать самому. Для этого необходимо иметь либо два мультиметра, либо специальное оборудование.
В первом случае, одним мультиметром измеряется напряжение на первичной обмотке, вторым на вторичной
Важно помнить, что замеры делаются только на холостом варианте работы трансформатора, то есть без нагрузки. Ни в коем случае не следует превышать значение номинального напряжения, указанного в паспорте, так как это значительно увеличит погрешность
Использование специального оборудования позволяет не использовать внешний источник питания, что существенно упрощается процедуру измерения.
Измеряя показатель трансформации, следует использовать измерительные приборы с классом точности не менее 0,5.
Что такое КПД трансформатора и от чего зависит
Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.
Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.
Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:
- электрического – в проводниках катушек;
- магнитного – в материале сердечника.
Величина указанных потерь при проектировании устройства зависит от следующих факторов:
- габаритных размеров устройства и формы магнитной системы;
- компактности катушек;
- плотности составленных комплектов пластин в сердечнике;
- диаметра провода в катушках.
Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.
Также читайте: Назначение силикагеля в трансформаторах
https://youtube.com/watch?v=SJzct0_DIvY
В процессе эксплуатации эффективность аппарата определяется:
- поданной нагрузкой;
- диэлектрической средой – веществом, использованным в качестве диэлектрика;
- равномерностью подачи нагрузки;
- температурой масла в агрегате;
- степенью нагрева катушек и сердечника.
Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.
Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.
Разновидности приборов учета электроэнергии
Счетчики являются многофункциональными устройствами для учета потребления, а также сохранения информации по потреблению электрической энергии. На сегодняшний день эксплуатируются три варианта приборов-счётчиков, предназначенных для учета расходуемой электрической энергии. К ним относятся индукционные, электронные и гибридные модели. Последний вариант наименее распространённый.
Механические или индукционные приборы учёта
Приборы такого типа состоят из двух катушек.
Первая катушка на напряжение ограничивает параметры переменного тока, преграждая помехи и образуя, в соответствии с напряжением, особый магнитный поток.
Вторая катушка на ток образует поток переменного типа.
К преимуществам механических моделей относятся высокая надежность и конструкционная простота, длительный эксплуатационный срок, независимости от перепадов напряжения и доступная стоимость. При выборе индукционных приборов нужно учитывать достаточно крупные габариты устройства.
Несмотря на широкое распространение, такое оборудование относится к устройствам малого класса точности и отличается повышенной энергоемкостью, а погрешности получаемых данных особенно хорошо заметны в условиях невысокой нагрузки на сеть.
Электронные приборы учёта
Модельный ряд электронных приборов отличается достаточно высокой стоимостью, которая вполне оправдана достойным качеством устройства, включая более высокий класс точности и способность функционировать в многотарифном режиме.
Принцип действия базируется на способе преобразования входных аналоговых сигналов в специальный цифровой код, расшифровываемый при помощи микроконтроллера.
Однофазный многофункциональный электронный счётчик электрической энергии DDS28U
Расшифрованные данные поступают на дисплей или так называемый оптический порт. Помимо высокой точности и многотарифной системы использования, к преимуществам можно отнести возможность ведения энергоучёта в двух направлениях, сохранение данных, возможность получения показаний в дистанционном режиме, а также долговечность и компактные размеры.
При выборе нужно учитывать основные недостатки таких моделей, которые представлены высокой чувствительностью к перепадам напряжения и отсутствием ремонтопригодности.
Гибридные приборы учёта
На сегодняшний день гибридные приборы учёта используются потребителями крайне редко. Такой промежуточный вариант счётчика электрической энергии имеет цифровой интерфейс, а измерительная часть устройства может быть представлена индукционным или электронным типом. Характерным является наличие механического вычислительного устройства.
Виды и правила выбора преобразователя электротока
Трансформаторное оборудование, снижающее электроток (ТТ), классифицируется по различным характеристикам, в том числе коэффициенту преобразования. Это оборудование требуется, если объект потребляет мощности, которые в несколько раз превышают возможности обычного узла.
ТТ преобразует ток до уровня, позволяющего подключить для контроля обычные электросчетчики на одну или три фазы и создать систему защиты линии.
Классификация
По способу монтажа
ТТ по такому принципу делятся на:
- опорные (устанавливаемые на поверхности);
- проходные (прикрепленные к шинопроводу);
- шинные (прикрепленные к шине);
- встроенные в системы силового электротока;
- разъемные (установленные на кабелях).
По типу изоляции
Трансформатор электротока может быть:
- с эпоксидной смолой или специальным лаком;
- в пластиковом корпусе;
- с твердой изоляцией из фарфора, бакелита. твердого пластика;
- с вязким составом (маслом);
- наполненные газом;
- с масляно-бумажной изоляцией.
Какие параметры учитывать
Для расчета показаний электросчетчика с трансформаторами тока важен коэффициент трансформации. Он может быть одноступенчатый или каскадный (многоступенчатый). Последний вид ТТ отличается наличием нескольких вторичных обмоток и большим количеством витков в первичной обмотке.
Нежелательно покупать ТТ со слишком высоким уровнем трансформации. При подобном выборе придется устанавливать счетчик на приемный вход. Более популярны преобразователи с одним коэффициентом, не меняющие показание во время эксплуатации. При их использовании проблема, как считаются показания счетчика электроэнергии, подключенного через трансформаторы тока, решается проще.
Расчет электроэнергии по счетчику с трансформаторами тока можно провести только в том случае, если известен коэффициент трансформации. Он должен быть указан в техдокументации, с которой продавался ТТ, и на корпусе. При подозрениях на неточности в отображаемых цифрах коэффициент можно посчитать самостоятельно.
Чтобы рассчитать коэффициент, необходимо подключить преобразователь к электротоку, создающему короткое замыкание во вторичной обмотке, и измерить, сколько ампер в ней.
Коэффициент трансформации – соотношение значений поданного электротока и проходящего во вторичной обмотке.
Например, если короткое замыкание вызвали 150 А, на вторичной обмотке 5 А, действительный коэффициент 30. Это более точное значение, чем номинальное, которое определяется по номинальному электротоку первичной и вторичной обмотки. Результат расчета показаний электросчетчика с трансформаторами тока более точный.
Разные виды трансформаторов и их коэффициенты
Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:
- силовой;
- автотрансформатор;
- импульсный;
- сварочный;
- разделительный;
- согласующий;
- пик-трансформатор;
- сдвоенный дроссель;
- трансфлюксор;
- вращающийся;
- воздушный и масляный;
- трехфазный.
Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.
Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.
Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.
Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.
Номинальная вторичная нагрузка, В | 3 | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 75 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|
Коэффициент, n | Номинальная предельная кратность | ||||||||||
3000/5 | 37 | 31 | 25 | 20 | 17 | 13 | 11 | 9 | 8 | 6 | 5 |
4000/5 | 38 | 32 | 26 | 22 | 20 | 15 | 13 | 11 | 10 | 8 | 6 |
5000/5 | 38 | 29 | 25 | 22 | 20 | 16 | 14 | 12 | 11 | 10 | 8 |
6000/5 | 39 | 28 | 25 | 22 | 20 | 16 | 15 | 13 | 12 | 10 | 8 |
8000/5 | 38 | 21 | 20 | 19 | 18 | 14 | 14 | 13 | 12 | 11 | 9 |
10000/5 | 37 | 16 | 15 | 15 | 14 | 12 | 12 | 12 | 11 | 10 | 9 |
12000/5 | 39 | 20 | 19 | 18 | 18 | 12 | 15 | 14 | 13 | 12 | 11 |
14000/5 | 38 | 15 | 15 | 14 | 14 | 12 | 13 | 12 | 12 | 11 | 10 |
16000/5 | 36 | 15 | 14 | 13 | 13 | 12 | 10 | 10 | 10 | 9 | 9 |
18000/5 | 41 | 16 | 16 | 15 | 15 | 12 | 14 | 14 | 13 | 12 | 12 |
Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:
Коэффициентом трансформации трансформаторов называется отношение напряжения обмотки высшего напряжения (ВН) к напряжению обмотки низшего напряжения (НН) при холостом ходе:
Где: Кл- коэффициент трансформации линейных напряжений;
U1 — линейное напряжение обмотки ВН;
U2 — линейное напряжение обмотки НН.
При определении коэффициента трансформации однородных трансформаторов или фазного коэффициента трансформации трехфазных
трансформаторов отношение напряжения можно приравнять к отношению чисел витков обмотки
где: Кф — фазный коэффициент трансформации;
U1ф,U2ф — фазные напряжения обмоток ВН и НН соответственно;
WI,W2 — число витков обмоток ВН и НН соответственно.
При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего линейных напряжения обмоток и соответственно числа витков ВН и НН сохраняется лишь при одинаковых группах соединения этих обмоток.
Если первичная и вторичная обмотки соединены по одинаковой схеме, например, обе в звезду, обе в треугольник и так далее, фазный и линейный коэффициенты трансформации равны друг другу. При различных схемах соединений обмоток, например, одной в звезду, а другой в треугольник, линейньй и фазный коэффициенты трансформации неодинаковы (они в данном случае отличаются друг от друга в 3 раз).
Определение коэффициента трансформации производится на всех ответвлениях обмоток и для вех фаз. Эти измерения, кроме проверки самого коэффициента трансформации дают возможность проверить также правильность установки переключателя напряжения на соответствующих ступенях, а также целостность обмоток.
Для определения коэффициента трансформации применяют метод двух вольтметров (рис.2)
Рис.2 Определение коэффициента трансформации.
Со стороны высокого напряжения (ВН) подводится трехфазовое напряжение 220 В и измеряется напряжение на вторичной обмотке.
Внимание! Напряжение подводится только к обмоткам ВН (А, В, С). Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В
Пределы измерения вольтметров: PV1-250 В,PV2-15В
Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В.
Примечание: В данной работе трансформатор имеет одно положение переключателя.
Коэффициент трансформации отдельных фаз, замеренных на одних и тех же ответвлениях не должен отличаться друг от друга более чем на 2%.