Несколько обмоток
Для замеров сопротивления освобождают концы от электрических соединений. Выбирают любой вывод и замеряют все сопротивления относительно остальных. Рекомендуется записывать значения и маркировать проверенные концы.
Так мы сможем определить тип соединения обмоток: со средними выводами, без них, с общей точкой подключения. Чаще встречаются с отдельным подключением обмоток. Замер получится сделать только с одним из всех проводов.
Если имеется общая точка, то сопротивление замерим между всеми имеющимися проводниками. Две обмотки со средним выводом будут иметь значения только между тремя проводами. Несколько выводов встречается в трансформаторах, рассчитанных на работу в нескольких сетях номиналом 110 или 220 Вольт.
Типовой расчёт параметров
- напряжение первичной и вторичной обмотки;
- габаритны сердечника;
- толщину пластины.
После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.
Стержневой тип магнитопровода
В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:
- Рассчитывается ток нагрузки: In=Po/U2, А.
- Вычисляется величина тока вторичной обмотки: I2 = 1,5*In, А.
- Определяется мощность вторичной обмотки: P2 = U2*I2, Вт.
- Находится общая мощность устройства: Pт = 1,25*P2, Вт.
- Вычисляется сила тока первичной обмотки: I1 = Pт/U1, А.
- Находится необходимое сечение магнитопровода: S = 1,3*√ Pт, см².
После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S
. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:
- U1 — напряжение первичной обмотке, В.
- S — площадь сердечника, см².
- K1, K2 — число витков в обмотках, шт.
- d — диаметр провода, мм.
- I — обмоточный ток рассчитываемой катушки, А.
При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т
. е.поместится ли обмотка на каркас . Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.
Особенности автотрансформатора
Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.
Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.
Трансформатор тороидального типа
Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются
.Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными . В качестве таких данных используются:
- напряжение входной обмотки, В;
- напряжение выходной обмотки, В;
- ток выходной обмотки, А;
- наружный диаметр тора, мм;
- внутренний диаметр тора, мм;
- высота тора, мм.
Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную
. Для самостоятельного расчёта используются следующие формулы:
- Мощность выходной обмотки: P2=I2*U2, Вт.
- Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
- Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
- Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
- Площадь окна тора: Sfh=d*s* π/4, мм2.
- Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
- Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
- Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
- Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.
Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.
СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.
Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт
Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;
U
_2
– напряжение на выходе трансформатора, нами задано 36 вольт
;
I
_2
– ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.
Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1
, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
S = 1,2 · √P_1.
Где:S
– площадь в квадратных сантиметрах,P
_1 – мощность первичной сети в ваттах.
S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².
По значению S
определяется число витков w
на один вольт по формуле:
w = 50/S
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.
w = 50/10,4 = 4,8
витка на 1 вольт.
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
W1 = U_1 · w = 220 · 4.8 = 1056 витка.
Число витков во вторичной обмотке на 36 вольт:
W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,
округляем до 173 витка
.
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.
Величина тока в первичной обмотке трансформатора:
I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.
Ток во вторичной обмотке трансформатора:
I_2 = P_2/U_2 = 60/36 = 1,67 ампера.
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,
принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.
Для первичной обмотки диаметр провода будет:
d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.
Диаметр провода для вторичной обмотки:
d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
s = 0,8 · d².
где
: d – диаметр провода
.
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.
Площадь поперечного сечения провода диаметром 1,1
мм. равна:
s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.
Округлим до 1,0
мм².
Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².
Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.
Или два провода: – первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,– второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.
Смотрите статьи:– «Как намотать трансформатор на Ш-образном сердечнике».– «Как изготовить каркас для Ш – образного сердечника».
Электрический аппарат – трансформатор используется для преобразования поступающего переменного напряжения в другое – исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.
Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.
Как проверить импульсный трансформатор на межвитковое замыкание и обрыв
Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного.
В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом обозначения диода на схеме.
- Для определения обрыва к цифровому прибору подключаются измерительные провода.
- Один вставляется в разъёмы, обозначенные V/Ω, а второй — в COM.
- Галетный переключатель переводится в область прозвонки.
- Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным — к одному её выводу, а чёрным — к другому. При её целостности мультиметр запищит.
Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.
Таким же образом происходит проверка на межвитковое и короткое замыкание.
Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока.
Для проведения тестирования мультиметр переключается в режим проверки сопротивления.
Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым — последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.
Разновидности
Трансформаторы подразделяются на следующие группы:
- Которые понижают и повышают.
- Силовые в большинстве случаев нужны для уменьшения определенного напряжения.
- Устройства тока для подачи потребителю вечной величины тока и ее задержки в определенном диапазоне.
- Одно- и многофазные.
- Для сварки.
- Импульсные.
В зависимости от работы устройства изменяется и принцип подхода к вопросу о том, как проверять обмотки. Мультиметром можно проверить только маленькие приборы. Силовые машины уже потребуют иного подхода к диагностике проблемы.
https://youtube.com/watch?v=9TyGSORsa3I
Метод прозвонки
Способ диагностики омметром может помочь с вопросом о том, как проверять трансформатор питания. Прозванивают сопротивление между выводами 1 обмотки. Таким образом, создается целостность проводника. Перед таким моментом, происходит осмотр корпуса на предмет нагаров, наплыва из-за нагрева.
После этого, замеряют нынешние значения в Омах и сравнивают их с паспортными данными. Если таковых нет, то понадобится вспомогательная диагностика под напряжением. Прозвонить советуют каждый вывод относительно специального корпуса прибора, куда подключают заземление.
Перед замерами стоит отключить все концы агрегата. Отсоединить от цепи их советуют и в целях личной безопасности. Также необходимо проверить наличие электронной схемы, которая часто есть в новых моделях питания. Её тоже нужно выпаять перед проверкой.
Постоянное сопротивление может говорить о целой изоляции. Значения в пару килоом уже начнут вызывать мысли о пробоях на корпусе. Еще, это может быть из-за скоплений грязи, пыли или воды в воздушных частях устройства.
https://youtube.com/watch?v=JLthJvRUL10
Как проверить трансформатор на межвитковое замыкание под напряжением
Манипуляции с поданным питанием выполняют, когда думают, как проверить устройство на межвитковое замыкание. Если вы знаете величину питающего напряжения трансформатора, для которого предназначается трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные могут быть в воздухе.
Если значение напряжения отличается от стандартного значения, то делают выводы о настоящем замыкании в обмотках. Если при работе прибора вы услышали треск, искрение, то этот прибор лучше быстро выключить. Он сломан. Есть допустимые погрешности при проверке:
- Значения напряжения отличаются на 20%.
- Для сопротивления нормальным считается разброс значений в 50% от паспортных данных.
Замер амперметром трансформатора 220 В на 12 В
Теперь узнаем, как провести диагностику трансформатор тока. Его включают в цепь: штатную или собственно сделанную. Главное, чтобы значения тока было больше стандартного. Замеры амперметром выполняются в первичной цепи и во вторичной.
https://youtube.com/watch?v=KtYgHjwO6hA
Ток в первичной цепи сравним с вторичными показателями. Точнее, разделяют первые значения на замеры во вторичной обмотке. Коэффициент трансформации стоит собирать из справочника и сравнивать со своими расчетами. Результаты должны быть схожи.
Трансформатор тока запрещается замерять на холостом ходу. На вторичной обмотке в таком случае может произойти очень высокое напряжение, которое может повреждать изоляцию. Также стоит соблюдать полярность подключения, ведь это влияет на работу всей схемы. Вот вы и узнали, как найти первичную обмотку трансформатора. Ну и самое главное проверить сам блок питания и его мощность.
Если вы не знаете где вход, посмотрите на информацию в паспорте.
Преимущества и недостатки
Использование импульсных трансформаторов объясняется следующими преимуществами:
- высокими показателями выходной мощности;
- небольшой массой и габаритными размерами;
- высокой эффективностью, благодаря снижению энергетических потерь;
- меньшей ценой при сопоставимых характеристиках;
- высокой надёжностью по причине наличия схем защиты.
Разобранный импульсный трансформатор Малая масса достигается посредством возрастания частоты импульса. Это приводит к уменьшению объёма конденсаторов и простоте схемы выпрямления.
Возрастание коэффициента полезного действия обеспечивается, благодаря сокращению энергетических потерь.
Уменьшение габаритов связано со снижением количества использованных материалов. Это основная причина удешевления данной продукции. Ещё одно достоинство малых размеров – возможность применения устройства в малогабаритных электротехнических изделиях.
Недостатки связаны со сложностью в ремонте по причине отсутствия в схеме гальванической развязки наличии помех высокой частоты, в связи с особенностями конструкции и принципа действия устройства.
Чтобы предупредить влияние высокочастотных помех, нередко приходится прибегать к использованию специальных защитных средств, если применяется оборудование, для которого такие факторы нежелательны. В некоторых случаях, в связи с помехами, применение импульсных трансформаторов оказывается невозможным.
Перемотка сварочного трансформатора
Неисправности оборудования, для устранения которых потребуется перемотка катушек первичной и вторичной обмоток, указаны в таблице. Начинать ремонт следует с подготовки материалов:
- провод для первичной и вторичной обмоток (марку и количество можно узнать только после разборки сгоревшего аппарата);
- шеллак (можно заменить цапонлаком или краской ПФ);
- оправку (брусок) для намотки вторичной обмотки (по размерам каркаса катушки). Изготавливать его рекомендуется из клиньев. Иначе, после намотки с цельного бруска, снять будет очень проблематично. Размеры снимаются после разборки;
- лакоткань.
Разбираем трансформатор, разматываем обмотки и считаем витки и слои (обязательно записываем).
Рассчитываем длину провода по:
- длине «среднего витка». Это – среднее арифметическое между: максимальной длиной – витка наружного слоя и минимальной – внутреннего;
- количеству слоёв и витков.
Длина провода определяется, как произведение длины «среднего витка», количества витков в слое и количества слоёв.
На несгоревшей части обмотки визуально определяем марку провода и, измерив диаметр, рассчитываем его сечение. Теперь мы знаем: какого и сколько нам нужно провода.
Наматываем новые катушки: первичную обмотку из тонкого провода можно прямо на каркас, вторичную из провода большого сечения – на оправку. Предварительно наматываем один слой лакоткани. Витки наматываем плотно «один к одному», повторяя сгоревшую обмотку и строго придерживаясь количества витков. Каждый слой обмотки тщательно промазываем шеллаком или его заменителем и прокладываем слой лакоткани. После высыхания шеллак будет предотвращать перемещение проводов, вызванное их расширением при нагревании (по обмоткам протекает большой электрический ток), и разрушение изоляции. В купе с лакотканью это предотвратит межвитковое короткое замыкание и необходимость повторного ремонта.
После намотки, собираем катушки сварочного трансформатора и просушиваем их (в домашних условиях для этого можно использовать духовку). Температура и продолжительность зависит от применяемых материалов.
Производим окончательную сборку трансформатора. Тестером или любым другим омметром «прозваниваем» (проверяем целостность) обмоток. Первичная должна иметь электрическое сопротивление около 20 Ом, вторичная – «0», между обмотками – «бесконечность».
Проверяем работоспособность трансформатора путём измерения напряжения ХХ (холостого хода – оно указано в «Паспорте сварочного аппарата». Обычно 50…60 В)
Первичную обмотку через электрический автомат (ВАЖНО! Автомат включать в цепь питания обязательно) включаем в электрическую сеть, и тестером (или любым другим вольтметром переменного тока) замеряем напряжение вторичной обмотки. Если всё сделано правильно, то величина этого электрического напряжения соответствует напряжению ХХ, указанному в «Паспорте»
Устанавливаем сварочный трансформатор на своё законное место в сварочнике и пробуем варить.
Конструкция преобразователя
Перед тем как приступить непосредственно к проверке импульсного трансформатора (ИТ), желательно знать, как он устроен, понимать принцип действия и различать существующие виды. Такое импульсное устройство используется не только как часть блока питания, его задействуют при построении защиты от короткого замыкания в режиме холостого хода и в качестве стабилизирующего элемента.
Импульсный трансформатор используется для преобразования величины тока и напряжения без изменения их формы. То есть он может изменить амплитуду и полярность различного рода импульса, согласовать между собой различные электронные каскады, создать надёжную и устойчивую обратную связь. Поэтому главным требованием, предъявляемым к нему, является сохранение формы импульса.
Добиваются этого снижением паразитных величин, таких как межвитковая ёмкость и индуктивность, путём использования небольших сердечников, расположением витков, уменьшением числа обмоток. Основными характеристиками трансформатора являются: мощность и рабочее напряжение. Конструктивно устройство может быть выполнено в следующем виде:
- стержневом — магнитопровод такого трансформатора выполняется из П-образных пластин, обхваченных обмотками;
- броневом — используются Ш-образные пластины, а обмотки располагаются в катушках, образуя своеобразную броню;
- тороидальном — его вид напоминает геометрическую фигуру тор, при этом он не имеет катушек, а обмотка наматывается на сердечник;
- смешанном (бронестержневом) — собирается из четырёх катушек и магнитопровода совмещённого типа.
Расположение обмоток может быть выполнено спиральным, коническим и цилиндрическим видом. Особенностью первого типа является использование не проволоки, а широкой тонкой фольгированной ленты. Второго — выполняются с различной толщиной изоляции, влияющей на напряжение между первичной и вторичной обмотки. Третьего же типа представляют собой конструкции с намотанной проволокой на стержень по спирали.
https://youtube.com/watch?v=FRrhpGX5vVQ
https://youtube.com/watch?v=BEgvm4o-u2Q
https://youtube.com/watch?v=K1U3bO-5ets
Выявление межвиткового замыкания
Чтобы выявить такой дефект импульсного трансформатора, мультиметра недостаточно. Как минимум, понадобится еще хорошее зрение и внимательность. Для изоляции проволоки используется только ее лаковое покрытие. В случае пробоя изоляции остается сопротивление между расположенными рядом витками, и контактная область греется. Поэтому нужно убедиться в отсутствии подтеков, вспучивания, запаха гари, черноты, подгорания. После определения типа преобразователя можно увидеть в справочнике значение сопротивления его катушек. После этого следует тестером в функционале мегаомметра замерить сопротивление изоляции – между парами обмоток и отдельно между каждой из них и корпусом. Измерения осуществляются при напряжении, значащемся в техдокументации на преобразователь. Измеренные величины сравниваются со справочными, и в случае нестыковки на 50% или выше диагностируется неисправность обмотки.
Силовой трансформатор
Подобные виды трансформаторов устанавливаются на электрических сетях и в различных установках для приёма и преображения электрического тока. Своё название он получил от того, что служит для подачи и приёма энергии на линии электропередачи и обратно с них, работает с напряжением до 1150 кВ.
По своей конструкции трансформаторы силового типа содержат две, иногда три и больше катушек, установленных на сердечнике. Работают они и на подстанциях, и на различных электростанциях. Больше всего распространены трехфазные преобразователи, так как у них на 15 процентов меньше потери, чем если использовать три однофазных.
Возможные неисправности
Как известно, любой трансформатор состоит из следующих компонентов:
- первичная и вторичная катушки (вторичных может быть несколько);
- сердечник или магнитопровод;
- корпус.
Таким образом, перечень возможных поломок довольно ограничен:
- Поврежден сердечник.
- Перегорел провод в какой-либо из обмоток.
- Пробита изоляция, вследствие чего имеется электрический контакт между витками в катушке (межвитковое замыкание) либо между катушкой и корпусом.
- Изношены выводы катушек или контакты.
Трансформатор тока Т-0,66 150/5а
Некоторые из дефектов определяются визуально, поэтому трансформатор в первую очередь нужно внимательно осмотреть
Вот на что при этом следует обращать внимание:
- трещины, сколы изоляции либо ее отсутствие;
- состояние болтовых соединений и клемм;
- вздутие заливки или ее вытекание;
- почернения на видимых поверхностях;
- обуглившаяся бумага;
- характерный запах горелого материала.
Если явных повреждений нет, следует проверить устройство на работоспособность при помощи приборов. Для этого нужно знать, к каким обмоткам относятся все его выводы. На преобразователях больших размеров данная информация может быть представлена в виде графического изображения.
Если таковое отсутствует, можно воспользоваться справочником, в котором следует найти свой трансформатор по маркировке. Если он является частью какого-то электроприбора, источником данных могут стать спецификация или принципиальная электрическая схема.
Прямой метод (проверка схемы под нагрузкой)
Именно он первым приходит на ум: нужно замерять токи в первичной и вторичной обмотках работающего устройства, а затем путем деления их друг на друга определить фактический коэффициент трансформации. Если он соответствует паспортному — трансформатор исправен, если нет — нужно искать дефект. Этот коэффициент можно вычислить и самостоятельно, если известно напряжение, которое должен выдавать прибор.
К примеру, если на нем написано 220В/12В, то перед нами понижающий трансформатор, следовательно, ток во вторичной обмотке должен быть в 220/12 = 18,3 раза выше, чем в первичной (термин «понижающий» относится к напряжению).
Схема поверки однофазного трансформатора методом непосредственного измерения первичного и вторичного напряжений с использованием образцового трансформатора
Нагрузку к вторичной обмотке нужно подключать такую, чтобы в обмотках протекали токи не ниже 20% от номинальных значений. При включении будьте настороже: если раздастся треск, появится запах гари, либо вы увидите дым или искрение, прибор нужно сразу же отключить.
Если у тестируемого трансформатора несколько вторичных обмоток, то те из них, которые не подключены к нагрузке, должны быть закорочены. В разомкнутой вторичной катушке при подключении первичной к источнику переменного тока может появиться высокое напряжение, способное не только вывести из строя оборудование, но и убить человека.
Последовательное соединение обмоток трансформатора при помощи батарейки и мультиметра
Если речь идет о высоковольтном трансформаторе, то перед включением нужно проверить, не нуждается ли его сердечник в заземлении. Об этом говорит наличие специальной клеммы, помеченной литерой «З» или специальным значком.
Прямой метод проверки трансформатора позволяет со всей полнотой оценить состояние последнего. Однако, далеко не всегда имеется возможность включить трансформатор с нагрузкой и произвести все необходимые замеры.
Если ввиду требований безопасности либо по иным соображениям сделать этого нельзя, состояние устройства проверяют косвенным образом.
Проверка с помощью мультиметра дома
В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.
Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.
Основы и принцип работы
Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.
Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.
Разновидности
Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.
При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.
Порядок проверки
Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.
Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.
Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.
Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.
Порядок проверки трансформатора мультиметром.