Как узнать мощность и ток трансформатора по его внешнему виду

Трансформатор на 110В выдержит 220В ?

Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не «спалить» и как определить максимальные токи вторичных обмоток. Такие и подобные вопросы задают себе многие начинающие радиолюбители. В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов фото в начале статьи , разобраться с каждым из них..

Надеюсь, эта статья будет полезной многим радиолюбителям. Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой. Рассмотрим все возможные варианты. Нагрузочный ток такой обмотки, будет равен наименьшему нагрузочному току из имеющихся обмоток. Например: имеются две обмотки с напряжениями 6 и 12 вольт и токами нагрузки 4 и 2 ампера — в итоге получим общую обмотку с напряжением 18 вольт и током нагрузки — 2 ампера.

Правильность соединения проверяется так. Соединяем вместе два провода от обмоток и на оставшихся двух измеряем напряжение. Если напряжение будет равно удвоенному, то соединение произведено не правильно, в этом случае меняем концы любой из обмоток. Если напряжение на оставшихся концах равно нулю, или около того перепад более чем в пол-вольта не желателен, обмотки в этом случае будут греться на ХХ , смело соединяем вместе оставшиеся концы.

Общее напряжение такой обмотки не изменяется, а нагрузочный ток будет равен сумме нагрузочных токов, всех соединённых параллельно обмоток. Например: имеются три обмотки с выходным напряжением 24 вольта и токами нагрузки по 1 амперу.

В итоге получим обмотку с напряжением 24 вольта и током нагрузки — 3 ампера. Общее напряжение и ток будет, как при последовательном соединении. Например: имеем две последовательно и три параллельно соединённые обмотки примеры, описанные выше.

Соединяем эти две составные обмотки последовательно. Общее напряжение такой обмотки будет равно разности напряжений, включённых встречно обмоток, общий ток будет равен наименьшей по току нагрузки обмотки. Такое соединение применяется в том случае, когда необходимо понизить выходное напряжение имеющейся обмотки. Так же, что бы понизить выходное напряжение какой либо обмотки, можно домотать поверх всех обмоток дополнительную обмотку проводом, желательно не меньшего диаметра той обмотки, напряжение которой необходимо понизить, что бы не уменьшился нагрузочный ток.

Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

Советы

Проверка работоспособности трансформаторов важна, перед подключением или ремонтом устройства. При работе нужно соблюдать следующие правила:

  1. Внимательно изучить маркировку и схему на корпусе.
  2. Если на корпусе нет схемы, выполнять прямое подключение запрещено.
  3. Запрещается подключать в сеть неизвестный ТР, без проверки на короткое замыкание.
  4. Любые замеры под напряжением проводятся без контакта с клеммами.
  5. Не выпаивая устройство из схемы, не получиться сделать замер выходящего сопротивления.
  6. При работе нужно четко соблюдать технику безопасности.

Трансформаторы, особенно неизвестные, могут стать причиной короткого замыкания электропроводки и привести к возникновению пожара.

Что делает трансформатор

У трансформатора много полезных и важных функций:

Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.

Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.

Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.

Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).

Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.

  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.

Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.

Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.

Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.

Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Определение тока холостого тока

Если в ходе предыдущих проверочных работ неисправность не выявлена, рекомендуется выполнить диагностику на ток ХХ. Зачастую он составляет 0,1-0,15 от номинала. Для выполнения диагностики измерительный прибор используется в режиме амперметра. Мультиметр подсоединяется к диагностируемому устройству замкнутым накоротко

Это условие важно, поскольку при подаче тока на катушку его значение увеличивается в сотни раз по сравнению с номиналом. После размыкания выводов тестера на дисплее отображается значение тока без нагрузки, т.е

тока ХХ. Идентично измеряются его величины на вторичных катушках. Для определения напряжения обычно используется реостат. Альтернативой ему способна стать спираль из вольфрама или набор ламп. Для повышения нагрузки уменьшается число витков спирали или увеличивается число лампочек.

Как подобрать предохранитель для трансформатора

Рассчитываем ток предохранителя обычным способом:

I – ток, на который рассчитан предохранитель (Ампер), P – габаритная мощность трансформатора (Ватт), U – напряжение сети (~220 Вольт).

Пример:

Ближайшее значение – 0,25 Ампер.

определение первичного напряжения трансформатора

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт) Ток ХХ (мА)
5 — 10 10 — 200
10 -50 20 — 100
50 — 150 50 — 300
150 — 300 100 — 500
300 — 1000 200 — 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности. Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?

Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-200 и ему подобные.

Что делаем далее, если неизвестно количество витков на вольт?

Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Конструкция (виды) импульсных трансформаторов

В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:

  • стержневом;
  • броневом;
  • тороидальном (не имеет катушек, провод наматывается на изолированный сердечник);
  • бронестержневом;

На рисунках обозначены:

  • A – магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
  • В – катушка из изолирующего материала
  • С – провода, создающие индуктивную связь.

Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.

Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.

Как проверить трансформатор мультимтером правильно

Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах

Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.

Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:

А так как мощность – это произведение тока i на напряжение u

S = u∙i,

Откуда получаем простое уравнение:

Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.

Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:

Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.

Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.

Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.

Как определить обмотки трансформатора

Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.

В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.

Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.

Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.

Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).

Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.

Соединение обмоток трансформатора

Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.

Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.

Проверка с помощью мультиметра дома

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.

Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.

Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности


Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.

При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.


Порядок проверки трансформатора мультиметром.

Режим холостого хода трансформатора

Холостым ходом (ХХ) называют такое подключение устройства, когда на первичную обмотку подается номинальное переменное напряжение, а цепи всех вторичных – разомкнуты (нагрузки не подключены).

В преобразователе напряжения, деление обмоток (катушек) на первичную и вторичные условно. Любая из них становится первичной, когда на нее поступает исходное переменное напряжение. Прочие, в них наводится ЭДС — становятся, соответственно, вторичными.


Опыт холостого хода проводится по схеме показанной на рисунке

Следовательно, любой трансформатор, соответственно способу подключения, может быть как понижающим, так и повышающим (кроме разделительного – с коэффициентом трансформации, равным единице).

Поскольку цепь вторичной катушки разъединена, тока в ней нет (I2 = 0). В первичной протекает I1, формирующий в магнитопроводе поток вектора магнитной индукции Ф1. Последний меняется по синусоидальному закону, но из-за перемагничивания стали отстает по фазе от I1 на угол B (угол потерь).

Применяют следующую терминологию:

  • I1: ток ХХ трансформатора;
  • Ф1: рабочий магнитный поток.

Под действием Ф1 во всех катушках возникает ЭДС:

  • в первичной – самоиндукции (Е1);
  • во вторичных – взаимоиндукции (Е2).

Зависимость ЭДС от различных параметров определяется формулами:

Е1 = 4,44 * f * W1 * Ф1max *10-8 ,

Е2 = 4,44 * f * W2 * Ф1max * 10-8, где

F — частота, Гц;

W1 и W2 — число витков в обмотках;

Ф1max — величина магнитного потока в точке максимума.

Следовательно, числовое значение ЭДС находится в прямой зависимости от числа витков катушки. Из соотношения ЭДС в первичной и вторичной обмотках, определяют главный параметр аппарата— коэффициент трансформации (К): К = Е1 / Е2 = W1 / W2.

Вторичная катушка по сравнению с первичной содержит витков:

  • в повышающем трансформаторе – больше (К меньше единицы);
  • в понижающем – меньше (К больше единицы).

Помимо рабочего (основного), в установке образуется магнитный поток рассеяния Фр1. Это силовые линии, ответвляющиеся от рабочего магнитного потока Ф1 в сердечнике и замыкающиеся по воздуху вокруг витков катушек. Как и Ф1, Фр1 является переменным, а значит, он, согласно закону электромагнитной индукции, наводит в первичной обмотке ЭДС самоиндукции Ер1.

Е1 и Ер1 всегда направлены против приложенного к первичной обмотке напряжения U1. По характеру действия на ток, они подобны резистору, потому и обозначаются термином «индуктивное сопротивление» (Х).


Емкостное и индуктивное сопротивление

Следовательно, создавая I1, напряжение U1 преодолевает активное сопротивление R1 первичной катушки и обе ЭДС самоиндукции. Математически это выглядит так: U1 = I1 * R1 + (-Е1) + (-Ер1).

Запись выполнена в векторной форме, поэтому перед обозначениями ЭДС самоиндукции проставлены значки «-»: они говорят о противоположном направлении этих векторов относительно напряжения U1. Ток холостого хода I1 не является строго синусоидальным.

Он искажается, поскольку имеет в своем составе так называемую третью гармоническую составляющую (ТГС), обусловленную вихревыми токами, гистерезисом и магнитным насыщением магнитопровода. Но с определенной долей приближения, годной для практических расчетов, его можно заменить эквивалентным синусоидальным током с равноценным действующим значением.

КАК ПРОТЕСТИРОВАТЬ КАТУШКИ ЗАЖИГАНИЯ

Метод # 1: Тестирование катушки зажигания искрой

  • Заглушите мотор, и откройте капот. В зависимости от марки автомобиля, катушки могут быть расположены в разных местах. На двигателях без распределителя зажигания, свечи подключаются прямо к катушкам. Самым верным способом найти катушки, это следовать проводам, которые идут от распределителя зажигания в обратную сторону. Защищайте открытые участки кожи и глаза, используйте инструмент только с изолированными ручками.
  • Отсоедините один высоковольтный провод от свечи. К каждой свечи ведет отдельный кабель. Если вы не так давно заглушили двигатель, то вероятно, что он будет очень горячим. Для избежания травм и ожогов подождите 10-20 мин, и приступайте к работе.
  • Снимите свечу зажигания специальной торцовой насадкой для свечей.Делайте это аккуратно, не давая мусору попасть в отверстие для свечи. Если в отверстие свечи зажигания попадет грязь или мусор, это может привести к повреждению мотора. А удаление мусора из цилиндра довольно сложная операция. Так что будьте предельно внимательны в этом пункте.

Присоедините вытянутый ранее провод обратно к свече. Свеча должна соединяться с распределителем зажигания, но не вкручена в двигатель. Держите свечу только плоскогубцами с изолированной ручкой, чтобы вас не ударило током.

Резьбовой стороной свечи коснитесь к голому металлу. Дотроньтесь резьбовым участком свечи к голому участку вашего автомобиля. Это может быть двигатель или участок на котором нет краски.

Попросите помощника или друга включить зажигание. При включении зажигания, все электрические системы автомобиля начинают работать, и если катушка зажигания исправна, то на свечу будет подаваться напряжение.

Убедитесь в том, что вы видите как проскакивают голубые искры. Если вы не наблюдаете голубую искру, то проблема очевидна. Ваши катушки не функционируют и требуют замены. Если у искры оранжевый цвет, это значит, что на свечу подается недостаточное напряжение. Причинами могут стать: слабый ток, плохой контакт или повреждение катушки.

Установите свечу на место и подсоедините провод обратно. Выключите зажигание и проведите сборку с обратном порядке.

Это первый способ проверки катушки зажигания своими руками. Будьте осторожны при работе с напряжением и соблюдайте все правила защиты.

Метод # 2. Тестируем катушки зажигания измеряя сопротивление

Тестируем катушки зажигания измеряя сопротивление

Снимаем катушку с автомобиля. Это самый верный способ убедиться, что катушка работает исправно. Для этого необходим прибор для измерения электросопротивляемости — омметр. С помощью омметра, вы точно определите текущие состояние катушки зажигания. Для того, чтобы снять катушку зажигания, необходимо: отсоединить провода от распределителя зажигания, и открутить крепления самой катушки, гаечным ключом. Это необходимо делать при выключенном зажигании.

Требуются характеристики вашей модели катушки зажигания. Для каждого автомобиля свои характеристики катушки. Если ваше измерение показало другие показатели, разные с теми, что указаны в характеристике, то вероятно ваша катушка требует ремонта или замены.

Прикоснитесь щупами омметра контактов первичной обмотки катушки. Коснитесь двух боковых контактов одновременно. Со стороны распределителя катушка имеет три контакта: один в центре и два по бокам. Включите омметр и замеряйте показатели.

Замеряем значение сопротивления вторичной обмотки. Прикоснитесь щупами к центральному контакту и одному из боковых.

Сравните ваши показатели с заводскими характеристиками. Катушка зажигания очень чувствительна. Если показания отличаются от заводских, катушку следует заменить, так как она испорчена и работает не правильно.

Сопротивление первичной обмотки должно находиться в диапазоне от 0.7-1.7 Ом. А вторичной в пределах от 8-15 кОм. Это два самых простых способа, как проверить катушку зажигания самому и в домашних условиях. Для проверки катушки вам понадобиться:

  1. Гаечные ключи, в частности съемник для свечей
  2. Отвертка
  3. Изолированные плоскогубцы
  4. Свечи
  5. Ключ зажигания
  6. Омметр или мультиметр