Как проверить обмотки трансформатора

Содержание

Как Проверить Трехфазный Двигатель Мегаомметром

Как проверить состояние обмотки двигателя

На первый взгляд, обмотка представляет собой кусок проволоки, намотанной особым образом, и ломать там особо нечего. Но у него есть особенности:

серьезный отбор однородного материала по всей его длине;

точная калибровка формы и сечения;

применение в промышленных условиях слоя лака, обладающего высочайшими изоляционными качествами;

сильные контактные соединения.

Если какое-либо из этих требований нарушается в любой точке провода, то создаются условия для прохождения электронного тока и двигатель начинается с малой мощности или останавливается вообще.

Так проверить одна обмотка трехфазного двигателя должна быть отключена от других цепей. На всех двигателях они могут быть собраны по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и обозначаются знаками «Н» (начало) и «К» (конец). Время от времени отдельные соединения могут быть скрыты внутри корпуса, и для заключений используются другие методы обозначения, такие как числа.

В трехфазном двигателе статора используются обмотки с аналогичными электронными характеристиками, которые имеют одинаковое сопротивление. Если они показывают разные значения при измерении с помощью омметра, это повод серьезно подумать о причинах разброса показаний.

Как возникают неисправности в обмотке

Визуально оценить качество обмоток маловероятно из-за ограниченного доступа к ним. На практике они проверяют свои электронные свойства, считая, что все неисправности обмоток:

разрыв, когда целостность провода нарушается и прохождение через него электронного тока исключается;

небольшая неисправность, возникающая при разрыве изоляционного слоя между входной и выходной катушками, характеризуется исключением обмотки со стороны шунта;

перекрытие при разрыве изоляции между одной или несколькими соседними катушками, которые, таким образом, деактивируются. Смотрите тест мегометра. Как проверить шаговый двигатель a21k-m596 | Ток проходит через обмотку, минуя короткозамкнутые витки, не преодолевая их электронного сопротивления и не создавая для них особой работы;

пробой изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрывы проводов

Этот тип повреждения определяется путем измерения сопротивления изоляции омметром. Устройство будет демонстрировать огромное сопротивление — який, который учитывает зазор, создаваемый зазором в воздушном пространстве.

Проверка обмотки на короткое замыкание

двигатель, внутри электронной схемы, которая показывает короткое замыкание, она отключена защитой сети. Но даже при быстром выводе из этого метода появление короткого замыкания хорошо видно из-за воздействия высоких температур с сажей или следами синтеза металла.

В электронных методах определения сопротивления обмотки омметра получается очень маленьким значением, очень близким к нулю. Действительно, практически вся длина провода исключается из измерения из-за случайного шунтирования входных концов.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт

Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;

U
_2
– напряжение на выходе трансформатора, нами задано 36 вольт
;

I
_2
– ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1

, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:S
– площадь в квадратных сантиметрах,
P
_1 – мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S
определяется число витков w
на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8
витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,

округляем до 173 витка
.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,

принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где
: d – диаметр провода
.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.

Площадь поперечного сечения провода диаметром 1,1
мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.

Округлим до 1,0
мм².

Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.

Или два провода: – первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,
– второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:– «Как намотать трансформатор на Ш-образном сердечнике».– «Как изготовить каркас для Ш – образного сердечника».

Электрический аппарат – трансформатор используется для преобразования поступающего переменного напряжения в другое – исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Намотка трансформатора своими руками

Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.

Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

Читать также: Как снять подшипник с вала болгарки

Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.

Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

Как подобрать предохранитель для трансформатора

Рассчитываем ток предохранителя обычным способом:

I – ток, на который рассчитан предохранитель (Ампер), P – габаритная мощность трансформатора (Ватт), U – напряжение сети (~220 Вольт).

Пример:

Ближайшее значение – 0,25 Ампер.

определение первичного напряжения трансформатора

Схема измерения тока Холостого Хода (ХХ) трансформатора. Ток ХХ трансформатора обычно замеряют, чтобы исключить наличие короткозамкнутых витков или убедится в правильности подключения первичной обмотки.

При замере тока ХХ, нужно плавно поднимать напряжение питания. При этом ток должен плавно возрастать. Когда напряжение превысит 230 Вольт, ток обычно начинает возрастать более резко. Если ток начинает резко возрастать при напряжении значительно меньшем, чем 220 Вольт, значит, либо Вы неправильно выбрали первичную обмотку, либо она неисправна.

Мощность (Вт) Ток ХХ (мА)
5 — 10 10 — 200
10 -50 20 — 100
50 — 150 50 — 300
150 — 300 100 — 500
300 — 1000 200 — 1000

Ориентировочные токи ХХ трансформаторов в зависимости от мощности. Нужно добавить, что токи ХХ трансформаторов даже одной и той же габаритной мощности могут очень сильно отличаться. Чем более высокие значения индукции заложены в расчёт, тем больше ток ХХ.

Схема подключения, при определения количества витков на вольт.

Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?

Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-200 и ему подобные.

Что делаем далее, если неизвестно количество витков на вольт?

Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Как оценивается механическая прочность обмоток: о чем говорят показатели?

учитывается состояние расчета поля рассеяния в магнитостатических полях;
определяются соответствующие параметры типа используемой обмотки;
узнаются особенности конструкции обмотки, и главное, ее месторасположение;
обращается внимание на расположение витков в обмотке, конструктивные особенности катушки, так как этого зависит расчет и соотношение механической силы, возникающей в обмотке, и механической стойкости элемента трансформатора. Идеально, если первый параметр будет минимизирован, а второй – будет соответствовать нормам агрегата и не подводить в процессе эксплуатации.

Расчеты параметров самодельного трансформатора

На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

N = 40-60 / S, где S – площадь сечения сердечника в см 2 .

Константа 40-60 зависит от качества металла сердечника.

Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм 2 , стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

  • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
  • Низковольтная для накала 2,18 х 5 = 11 витков.
  • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

Количество витков первичной обмотки:

берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм.

Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе: 7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

Стоимость трансформатора

Цена на единицу продукции может колебаться от 50 до 700 рублей и выше, в зависимости от характеристик устройства. При покупке учитывается производитель изделия и размер приобретаемой партии. Наиболее дешево обойдётся продукция китайского производства, массово представленная на рынке.

Импульсные трансформаторы – устройства, без которых невозможно представить современную бытовую технику и промышленное производство. Эти аппараты обладают рядом преимуществ, по сравнению с аналогичным оборудованием, но в некоторых случаях сопутствующие недостатки не позволяют их использовать.

Нюансы диагностики

Гул при работе трансформатора является нормальным, если это специфичные устройства. Только искрение и треск свидетельствуют о неисправности. Часто и нагрев обмоток – это нормальная работа трансформатора. Чаще это наблюдается у понижающих устройств.

Может создаваться резонанс, когда вибрирует корпус трансформатора. Тогда следует его просто закрепить изоляционным материалом. Работа обмоток значительно меняется при неплотно затянутых или загрязненных контактах. Большинство проблем решается зачисткой металла до блеска и новой обтяжкой выводов.

При замерах значений напряжения и тока следует учитывать температуру окружающей среды, величину и характер нагрузки. Контроль подводящего напряжения также необходим. Проверка подключения частоты обязательна. Азиатская и американская техника рассчитана на 60 Гц, что приводит к заниженным выходным значениям.

Неумелое подключение трансформатора может привести к неисправности устройства. Ни в коем случае не подсоединяют к обмоткам постоянное напряжение. Витки быстро оплавятся в противном случае. Аккуратность в замерах и грамотное подключение помогут не только найти причину поломки, но и, возможно, устранить ее безболезненным способом.

Иногда случается, что есть трансформатор с большим количеством выводов без маркировки. Как его подключить, неизвестно. Если перепутать намотки или провода, оборудование может просто сгореть. Как определить начало и конец обмотки трансформатора, знают опытные электрики. Для того, чтобы установить характеристики, им достаточно мультиметра, плоской батарейки и лампы на 220 В.

Общие конструктивные схемы и классификация

Импульсные трансформаторы отличаются многообразием конструктивного исполнения. Это обусловлено их применением в широком диапазоне энергий, мощностей, напряжений, длительностей импульсов, различиями в назначении и условиях эксплуатации. Тем не менее, несмотря на это многообразие, все конструктивные схемы ИТ можно свести к четырем основным: стержневой, броневой, бронестержневой и тороидальный. Таким образом, по конструктивным признакам ИТ можно классифицировать следующим образом:

  • стержневые;
  • броневые;
  • бронестержневые;
  • тороидальные.

Форма поперечного сечения МС у них может быть прямоугольной или круговой. Характерная конструктивная особенность ИТ – относительно малое число витков в его обмотках. По этой причине объем проводниковых материалов обмоток ИТ намного меньше объема МС и в качестве обобщающего технико-экономического показателя конструкции ИТ естественно принимать объем его МС.


Классификация импульсных трансформаторов по виду сердечника и катушек.

Если принять такой показатель качества, то так как не все конструкции в этом отношении равноценны, ведь в каждой из них эффективно используется только та часть объема МС, которая заключена внутри обмоток, внешние части МС, т.е. ярма, служат только для проведения рабочего магнитного потока ИТ, а поперечное сечение постоянно по длине, то эффективность использования МС можно охарактеризовать коэффициентом использования длины λ = h/l, где под высотой обмотки h понимается суммарная высота катушек.

Максимальные значения этого коэффициента составляют: для тороидальной МС – 0.95; для стержневой – 0.6; для броневой и бронестержневой – 0.3. Таким образом, наиболее экономичны ИТ тороидального типа, относительно экономичны – стержневого и менее всего экономичны – броневого и бронестержневого.

Если учесть, что конструктивно и технологически стержневые, броневые и бронестержневые ИТ примерно равноценны, то следует вывод о целесообразности применения тороидальных и стержневых МС в ИТ, особенно мощных, отличающихся большим объемом МС.

Коэффициент использования длины МС можно повысить, увеличив высоту стержня или диаметр МС. Однако такие вытянутые в высоту или увеличенного диаметра конструкции имеют большие габариты, менее прочны, нетехнологичны, для них характерен повышенный расход проводниковых материалов, потери мощности в обмотках, искажения трансформированных импульсов и другие недостатки.

Однако наиболее важно то, что высшие функциональные показатели достигаются в конструкциях ИТ с максимальной большой площадью сечения и минимальной длиной МС. В связи с этим коэффициент использования длины МС является показателем относительным и характеризует только степень конструктивного совершенства ИТ


Схема подключения импульсных трансформаторов.

Облегчает классификацию следующее соображение. Характерным признаком класса напряжения является тип и конструкция главной изоляции ИТ, в сильной степени определяющая собой и конструкцию ИТ в целом.

Так, в ИТ на напряжение до 20 кВ удается применять сухую изоляцию из слоистых диэлектриков, в некоторых случаях – воздушную при нормальном давлении.

Будет интересно Трансформаторы для светодиодных лент, мнение специалистов

Поэтому, несмотря на определенную условность, целесообразно ввести такую классификацию по классу напряжения, чтобы значения напряжения отражало и конструктивные особенности изоляции, т.е. в следующем виде:

  • ИТ класса напряжения до 20 кВ;
  • ИТ класса напряжения до 100 кВ;
  • ИТ класса напряжения свыше 100 кВ.

В интервале напряжений 20-100 кВ обычно применяют бумажно-масляную или бумажно-пленочно-масляную изоляцию. При напряжении более 100 кВ лучшие результаты дает применение чисто масляной изоляции.

Методика расчета

Полный расчет трансформатора довольно сложен и учитывает такие параметры:

  • напряжение и частоту питающей сети;
  • число вторичных обмоток;
  • ток потребления каждой вторичной обмотки;
  • тип материала сердечника;
  • массогабаритные показатели.

На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.

Для расчета требуются следующие данные:

  1. Количество выходов.
  2. Напряжение и потребляемый ток каждой обмотки.

В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:

Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная формула:

Зная мощность, можно определить сечение сердечника:

Полученное значение сечения будет выражено в квадратных сантиметрах!

Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:

  • броневые;
  • стержневые;
  • О-образные.

Также различаются и способы изготовления магнитопроводов:

  • наборные – из отдельных пластин;
  • витые, разрезные или сплошные.

Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.

Как подобрать подходящий трансформатор

Выбрать подходящий трансформатор можно большим количеством способов, но львиная доля это безысходность или незнание мастера. Выделим три наиболее простых и применимых в практике метода:

  • Первый. Взять старый трансформатор, вышедший из строя. Посмотреть маркировку и найти в Интернете аналог. Если вдруг трансформатор требуется для иных целей, придется повозиться.
  • Второй способ: практический. Для этого следует замерить напряжение и силу тока в сети, а затем посмотреть требуемые параметры устройства, которое планируется подключать через трансформатор. После этого нужно посчитать коэффициент трансформации и, вооружившись этими знаниями, идти выбирать подходящую модель.
  • Третий способ: аналитический. Воспользоваться приведенным в статье расчетом или программным обеспечением, чтобы определить конкретные параметры модели. Если учесть, что в примере используются реальные сердечники и диаметры проводов, то реально найти устройство, которое будет соответствовать заявленным требованиям.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.