Обозначение электрических элементов на схемах

Самые популярные документы раздела

Следует делать различие в изображении контакта и контакта термореле, изображаемого следующим образом

Главная Электропроводка Условные графические обозначения Условные графические обозначения УГО элементов электрических схем проектов электроснабжения необходимы для упрощения понимания содержания документации. Это обозначение используют для ссылок в текстовых документах и для нанесения на объект. УГО в однолинейных и полных электросхемах Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Символьное обозначение применяется на равне с графическим, на узкопрофильных электросхемах используются оба типа одновременно.

Следует делать различие в изображении контакта и контакта термореле, изображаемого следующим образом Позиции переключателя, в которых отсутствуют коммутируемые цепи, или позиции, соединенные между собой, обозначают короткими штрихами пример шестипозиционного переключателя, не коммутирующего электрическую цепь в первой позиции и коммутирующего одну и ту же цепь в четвертой и шестой позициях 2. Дополнительно с буквенным обозначением указывается одна или несколько цифр, обычно они поясняют параметры. Примеры УГО в функциональных схемах Ниже представлен рисунок с изображением основных узлов систем автоматизации. Группы каждого вида установки отмечены черточками на клавишах приборов.

Обозначение линий связи на принципиальных схемах ГОСТ 2. Например, предохранитель и резистор имеют незначительные отличия. Устройства могут замыкать, размыкать и переключать контакты. D — Отображение аккумуляторного или гальванического источника питания.
Элементы электрических схем. Реле.

https://youtube.com/watch?v=rCK7mVWdMWE

Порядок изучения чертежей

Как читать электрические схемы правильно и понимать представленную на чертеже информацию? Достаточно уметь ориентироваться в условно-графических обозначениях ГОСТа, это основа каждого разработанного проекта.

Сначала определяют тип чертежа. Согласно по ГОСТ 2.702-75, каждому графическому документу соответствует индивидуальный код. Все электрические чертежи имеют буквенное обозначение «Э» и соответствующее цифровое значение от 0 до 7. Электрической принципиальной схеме соответствует код «Э3».

Чтение принципиальной схемы:

Визуально ознакомится с представленным чертежом, обратить внимание на указанные примечания и технические требования.
Найти на схематическом изображении все компоненты, указанные в перечне документа;
Определить источник питания системы и род тока (однофазный, трехфазный);
Найти основные узлы, и определить их источник электропитания;
Ознакомится с элементами и устройствами защиты;
Изучить способ управления, обозначенный на документе, его задачи и алгоритм действий. Понять последовательность действий устройства при запуске, остановке, коротком замыкании;
Анализировать работу каждого участка цепи, определить основные составляющие, вспомогательные элементы, изучить техническую документацию перечисленных деталей;
На основе изученных данных документа, сделать вывод о процессах, протекающих в каждом звене цепи, представленной на чертеже.. Зная последовательность действий, буквенно-графические обозначения, можно прочитать любую электрическую схему

Зная последовательность действий, буквенно-графические обозначения, можно прочитать любую электрическую схему.

Входное напряжение

Здесь ситуация совершенно другая. Все дело в том, что в российских линиях электропередач (кстати, по ГОСТу), напряжение может изменяться от номинального (220В) в пределах ±10%. О чем это говорит? Здесь две позиции:

  1. Если напряжение в подающей сети минимальное, а ток максимальный, то диапазон напряжений блок питания может гарантировать и при этом сохранить стабильность самого напряжения.
  2. Если напряжение максимальное и то же самое можно отнести и к току, то ни о какой стабилизации говорить нельзя. Просто блок перегреется. Вот вам и большая проблема.

Особенно усугубляется ситуация, если температура окружающей среды повышена (это касается летнего периода). Что делают в этой ситуации некоторые производители? Они просто занижают показатели диапазона напряжений. Но от этого потребителю не становится лучше. Ведь в некоторых регионах России напряжение в сети около 190 вольт является нормой. Отсюда и последствия:

  • Аккумуляторы заряжаются не полностью.
  • Время работы блоков питания снижается.
  • Срыв стабилизации, особенно при резком скачке токопотребления.

Питание от внешнего источника

При питании от внешнего источника максимальный ток будет зависеть от тока источника, поэтому в Pro версии набора наборе есть сетевой адаптер для питания моторов и светодиодной ленты, которые нельзя питать от линии USB. Также схеме будет гораздо приятнее работать с внешним питанием, особенно если в ней будут реле и сервоприводы. Рассмотрим пример, как организовать линию питания от адаптера с несколькими сервоприводами:

Таким образом вся нагрузка ложится на блок питания, и схема может работать по USB (для коммуникации и прошивки), но у нагрузки будет “запас” по току.

Связанные уроки

  • Основы электричества
  • Питание платы
  • Энергосбережение

Закон Ома

Все знают закон Ома, но не все умеют им пользоваться. Применительно к источникам питания и потребителям он работает так: потребитель берёт такой ток, какой ему нужен для работы, он называется ток потребления:

  • Сервопривод: ~500 мА во время движения
  • Реле: ~60 мА при активации
  • Датчики-модули ~1-10 мА
  • Мотор: ~500 мА
  • Плата Arduino: ~20 мА
  • Дисплеи: ~40 мА

Источник питания в свою очередь имеет такой параметр как максимальный ток, который он может отдать без повреждений и сильного изменения характеристик (напряжение, пульсации). Например:

  • USB порт: 500 мА
  • Сетевой 5V адаптер из набора: 2000 мА
  • Литиевый аккумулятор: ~5 A
  • Алкалиновая батарейка: ~1 А

Суммарный ток потребления нескольких потребителей должен быть меньше, чем максимальный ток источника питания, иначе источнику питания будет “тяжело” и он может выйти из строя. Также это означает, что можно спокойно подключать слабенький датчик хоть к 100 Амперному источнику питания, он возьмёт столько, сколько ему надо. Остальное останется “с запасом”.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ: САМОДЕЛЬНАЯ БАТАРЕЯ

Каждому из нас знакомы химические источники тока различных типов и форм. Но как это часто случается, мы редко задумываемся о том, как устроен этот совершенно привычный и обыденный предмет. А между тем, появление первых химических источников тока, положило начало превращению электричества из лабораторной диковинки в нашего повседневного помощника.

Правильное объяснение этому явлению смог дать другой итальянский ученый Алессандро Вольта. Он установил, что это явление связано с наличием двух разнородных металлов, соприкасающихся с электролитом, в роли которого выступала кровь лягушки, а сама лапка играла лишь роль чувствительного индикатора электрического тока . Опираясь на свои исследования Вольта в 1799г. создал первый химический источник тока. В этом устройстве Вольта использовал медный и цинковый электроды, погруженные в раствор серной кислоты.

Цинк бурно реагирует с кислотами. В раствор переходят не атомы цинка, а положительные ионы, так что в электроде остается избыток электронов, следовательно, цинковая пластина заряжается отрицательно. Вообще, большинство металлов при погружении в электролит заряжается отрицательно, на поверхности медной пластинки протекает подобный процесс. Но избыток отрицательных зарядов на медном электроде гораздо меньше, а значит, относительно цинкового электрода его потенциал получается более высоким. Если соединить внешним проводником медную и цинковую пластины, то электроны начнут перемещаться с цинковой пластины на медную, т.е. в цепи потечет электрический ток .

Часто напряжения, даваемого одним гальваническим элементом, недостаточно. Тогда их можно соединять последовательно в батареи.

Вообще изготовить химический источник тока совсем нетрудно: надо поместить в электролит две пластинки из разных металлов . Такие гальванические элементы возникают самопроизвольно. Например, намочил дождь крышу, покрытую оцинкованным железом, на железе наверняка имеются царапины, так, что и железо, и цинк вступили в контакт с водой, которая играет роль электролита. Цинк в такой паре начнёт активно разрушаться, а вот железо не пострадает, пока не разрушится весь цинк. Именно для этого и покрывают железо слоем цинка.

Нагляднее всего можно пронаблюдать гальваническую коррозию на примере контактов железа с цинком и медью в растворе соли. Железные скрепки были надеты на цинковую и медную пластины и погружены в раствор соли.

Через сутки скрепка, соединенная с медной пластиной, покрылась ржавчиной. В то время, как скрепка, бывшая в контакте с цинком, совершенно не пострадала.

Ученые составили электрохимический ряд напряжений металлов. Чем дальше друг от друга отстоят металлы в этом ряду, тем более высокое напряжение дает гальванический элемент, составленный из этих металлов. Так пара золото – литий теоретически может дать электродвижущую силу (ЭДС) 4,72 В. Но такая пара в водной среде работать не сможет – литий это щелочной металл, легко реагирующий с водой, а золото стоит слишком дорого для подобного применения.

На практике элемент Вольта обладает рядом серьёзных недостатков.

  1. Во-первых, электролитом ему служит весьма едкая жидкость – раствор серной кислоты. Жидкий электролит всегда представляет собой неудобство или даже опасность. Он может расплескаться, разлиться при повреждении корпуса.
  2. Во-вторых, на медном электроде такого элемента будет выделяться водород. Это явление называется поляризацией. По многим свойствам водород весьма близок к металлам, так что его пузырьки создадут дополнительную ЭДС поляризации, стремящейся вызвать ток противоположного направления . Кроме того, пузырьки газа не пропускают электрический ток, что тоже ведет к ослаблению тока. Поэтому приходится периодически встряхивать сосуд, удаляя пузырьки механически, или вводя в состав электролита специальные деполяризаторы.
  3. В третьих, в процессе работы гальванического элемента Вольта, цинковый электрод постепенно растворяется. Теоретически, когда гальванический элемент не используют, разрушение цинкового электрода должно прекратиться, но поскольку почти всегда в составе цинка есть примеси других металлов, они при соприкосновении с электролитом играют роль второго электрода, образуя короткозамкнутый элемент, что ведет к гальванической коррозии цинкового электрода . Для того, чтобы устранить этот недостаток, приходится использовать сверхчистый цинк или конструктивно предусматривать возможность извлечения цинкового электрода из электролита. Так что когда батарея не используется, электролит из нее следует сливать.

Но для демонстрационных целей всеми этими недостатками можно пренебречь, если заменить серную кислоту более безопасным электролитом.

Как обозначается постоянное и переменное напряжение

Постоянное напряжение или ток обозначаются аббревиатурой DC, что означает Direct current. На схемах и электроприборах принято также указывать постоянное напряжение простой ровной линией (—).

Значок переменного напряжения записывается в виде несколько иной аббревиатуры ( – AC. Если расшифровать, то получится «Alternating current». На клеммах электроприборов и распределительных щитков, а также на схемах она может изображаться как волнистая линия (

Важно! Если в сеть рассчитана для пропуска и того, и другого видов электроэнергии, она маркируется как «AC/DC» и обозначается на схеме двойной линией (верхняя линия прямая и сплошная, а нижняя прямая и пунктирная)

Изображение электрооборудования на планах

Согласно ГОСТ 21.210-2014 — документу, регламентирующему условные графические изображения электрооборудования и проводок на планах, есть четкие условные обозначения для каждого вида электрических устройств и связующих их звеньев: проводок, шин, кабелей. Распространяются они для каждого вида оборудования и недвусмысленно определяют его на схеме в виде графического или буквенно-численного условного обозначения.

Вам это будет интересно Редактор для рисования схем

В документе приведены представления для:

  • Электрооборудования, электротехнических устройств и электроприемников;
  • Линий проводок и токопроводов;
  • Шин и шинопроводов;
  • Коробок, шкафов, щитов и пультов;
  • Выключателей, переключателей;
  • Штепсельных розеток;
  • Светильников и прожекторов.

Электрооборудование, электротехнические устройства и электроприемники

К категории электрооборудования относятся: силовые трансформаторы, масляные выключатели, разъединители и отделители, короткозамыкатели, заземлители, автоматические быстродействующие выключатели и бетонные реакторы.

Таблица УГО для электрооборудования

К электротехническим устройствам и приемникам относятся: простейшие электротехнические устройства, общие электрические аппараты с двигателями, электроустройства, работающие на электроприводе, приборы с генераторами, приборы представляющие собой двигатели и генераторы, трансформаторные устройства, конденсаторные и комплектные установки, аккумулирующая аппаратура, нагревательные элементы электрического типа. Их обозначения представлены на картинке ниже.

УГО для электротехнических устройств

Линии проводок и токопроводов

К данной категории относятся: линии проводки, цепи управления, линии напряжения, линии заземления, провода и кабеля, а также их возможные виды проводки (в лотке, под плинтусом, вертикальная, в коробе и т.д). В таблицах ниже представлены основные обозначения для этой категории.

Первая таблица обозначений для линий проводок

Линии проводок представляют собой кабеля и провода, способные передавать электроэнергию на достаточно большие расстояния. Токопроводами же чаще всего называют электротехнические устройства, способные передавать электричество на небольшое расстояние. Например, от генератора тока к трансформатору и так далее.

Вторая таблица обозначений для линий проводок

Третья таблица обозначений для линий проводок

Четвертая таблица обозначений для линий проводок

Шины и шинопровода

Шинопроводы представляют собой кабельные устройства, которые состоят из проводниковых элементов, изоляции и распределителей, которые передают и распределяют электроэнергию в производственных помещениях. Условные обозначения шин и шинопроводов представлены на картинке ниже.

Обозначение шин и шинопроводов

Выключатели, переключатели и штепсельные розетки

Сюда входят и штепсельные розетки.

Первая таблица обозначений для переключателей

Все эти элементы используют для переключения, включения и отключения электрических цепей.

Вторая таблица обозначений для переключателей

Это может быть освещение или изменение напряжения. Следующие таблицы содержат основные обозначения для такого типа электроэлементов.

Третья таблица обозначений для переключателей

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

A – трехфазные ЭМ:

  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.

B – Коллекторные, с питанием от постоянного тока:

  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Половина реакции и условности

Полуячейка содержит металл в двух степенях окисления . Внутри изолированной полуячейки происходит окислительно-восстановительная (окислительно-восстановительная) реакция, которая находится в химическом равновесии , условие, которое символически записывается следующим образом (здесь «M» представляет катион металла, атом, который имеет дисбаланс заряда из-за потеря » n » электронов):

M n + (окисленные частицы) + n e — ⇌ M (восстановленные частицы)

Гальванический элемент состоит из двух полуэлементов, так что электрод одного полуэлемента состоит из металла A, а электрод другого полуэлемента состоит из металла B; Таким образом, окислительно-восстановительные реакции для двух отдельных полуэлементов выглядят следующим образом:

А п + + п е — ⇌ А
B m + + m e — ⇌ B

Общая сбалансированная реакция

m A + n B m + ⇌ n B + m A n +

Другими словами, атомы металла одной полуячейки окисляются, а катионы металлов другой полуячейки восстанавливаются. Разделив металлы на две полуячейки, их реакцией можно управлять таким образом, чтобы обеспечить перенос электронов через внешнюю цепь, где они могут выполнять полезную работу .

Электроды соединены металлической проволокой, чтобы проводить электроны, участвующие в реакции.

В одной полуячейке растворенные катионы металла-B объединяются со свободными электронами, которые доступны на границе раздела между раствором и электродом металла-B; эти катионы тем самым нейтрализуются, вызывая их выпадение в осадок из раствора в виде отложений на металлическом электроде B, процесс, известный как гальваническое покрытие .
Эта реакция восстановления заставляет свободные электроны по всему электроду металла-B, проволоке и электроду металла-A втягиваться в электрод металла-B. Следовательно, электроны отталкиваются от некоторых атомов электрода металла-A, как если бы катионы металла-B вступали в реакцию непосредственно с ними; эти атомы металла-A становятся катионами, которые растворяются в окружающем растворе.
По мере продолжения этой реакции в полуячейке с электродом металла-A образуется положительно заряженный раствор (потому что в нем растворяются катионы металла-A), в то время как в другой полуячейке образуется отрицательно заряженный раствор (поскольку катионы металла-B выпадать из него в осадок, оставляя после себя анионы); неослабевая, этот дисбаланс в ответственности остановит реакцию. Растворы полуэлементов соединены солевым мостиком или пористой пластиной, которая позволяет ионам переходить от одного раствора к другому, что уравновешивает заряды растворов и позволяет реакции продолжаться.

По определению:

  • Анод представляет собой электрод , в котором окисление (потеря электронов) имеет место (металл-электрод); в гальваническом элементе это отрицательный электрод, потому что при окислении электроны остаются на электроде. Эти электроны затем проходят через внешнюю цепь к катоду (положительному электроду) (в то время как при электролизе электрический ток движет поток электронов в противоположном направлении, а анод является положительным электродом).
  • Катодом является электрод , где уменьшение (прирост электронов) имеет место (металл-B электрод); в гальваническом элементе это положительный электрод, поскольку ионы восстанавливаются, забирая электроны с электрода и снимая пластину (в то время как при электролизе катод является отрицательным полюсом и притягивает положительные ионы из раствора). В обоих случаях оператор « кот hode привлекает кошек ионов» истинно.

Гальванические элементы по своей природе вырабатывают постоянный ток . Клетка Уэстон имеет анод , состоящий из кадмия , ртути амальгамы , и катод , состоящий из чистой ртути. Электролит представляет собой (насыщенный) раствор сульфата кадмия . Деполяризатор представляет собой пасту из сульфата ртути. Когда раствор электролита насыщен, напряжение ячейки очень воспроизводимо; следовательно, в 1911 году он был принят в качестве международного стандарта для напряжения.

Батарея — это набор гальванических элементов, которые соединены вместе и образуют единый источник напряжения. Например, типичная свинцово-кислотная батарея на 12 В имеет шесть гальванических элементов, соединенных последовательно с анодами, состоящими из свинца, и катодами, состоящими из диоксида свинца, оба погружены в серную кислоту. В больших аккумуляторных , например, в телефонной станции, обеспечивающей питание телефонов пользователей центрального офиса, ячейки могут быть подключены как последовательно, так и параллельно.

Чем опасен АС ток для человека

Как уже упоминалось, особенность АС напряжения заключается в равномерном протекании частиц от одного полюса к другому. В сравнении с DC током он считается менее опасным так как в большинстве случаев оказывает на человеческий организм спазматическое воздействие. Спазм проходит сразу после снятия напряжения, что снижает вероятность критических результатов.

Однако отсутствие опасности для организма наблюдается только в случае малого значения постоянного тока. Чем больше его значение, тем возрастает вероятность критических последствий. Например, при контакте с напряжением, превышающем 500 В, ток может оказаться опаснее чем переменный. Однако в быту такие значения отсутствуют и используются в трансформаторах или подстанциях, доступ куда открыт только специально обученным людям.

Что опаснее для человека

Для человеческого организма большую опасность представляет переменный АС. Под его воздействием происходит резкая фибрилляция сердечных желудочков. Но это не означает, что постоянный ток может считаться безопасным. Люди, попавшие под такое напряжение, получают тяжёлые травмы в результате отброса и механического удара.

Защита от перегрузки

Источники питания часто имеют защиту от короткого замыкания или перегрузки, которые могут повредить источник питания или вызвать пожар. Предохранители и автоматические выключатели — это два обычно используемых механизма защиты от перегрузки.

Предохранитель содержит короткий кусок проволоки, который плавится при протекании слишком большого тока. Это эффективно отключает источник питания от нагрузки, и оборудование перестает работать до тех пор, пока не будет выявлена ​​проблема, вызвавшая перегрузку, и не будет заменен предохранитель. В некоторых источниках питания используется очень тонкая перемычка, припаянная к месту в качестве предохранителя. Конечный пользователь может заменить предохранители в блоках питания, но для доступа к предохранителям в потребительском оборудовании и их замены могут потребоваться инструменты.

Автоматический выключатель содержит элемент, который нагревает, сгибает и запускает пружину, которая отключает цепь. Как только элемент остынет и проблема будет выявлена, выключатель можно будет сбросить и подать питание.

Некоторые блоки питания используют похороненный в трансформаторе , а не предохранитель. Преимущество состоит в том, что он позволяет потреблять больший ток в течение ограниченного времени, чем устройство может обеспечивать непрерывно. Некоторые из таких вырезов самовосстанавливаются, некоторые предназначены только для одноразового использования.

Ограничение тока

Некоторые источники питания используют ограничение тока вместо отключения питания в случае перегрузки. Используются два типа ограничения тока: электронное ограничение и ограничение импеданса. Первый типичен для лабораторных блоков питания, второй — для источников питания мощностью менее 3 Вт.

Foldback ограничитель тока уменьшает выходной ток намного меньше , чем ток максимальных без неисправностей.

Стабилизаторы тока

Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока

Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым. Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п

Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =)

Простой стабилизатор тока на КРЕНке

Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима). Схема и применение показаны на рисунках ниже

Стабилизатор тока на КР142ЕН12 (LM317)

Стабилизатор тока на КРЕН в качестве зярядного устройства

Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше.

Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п.

Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы.

Простой стабилизатор тока на двух транзисторах

Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики.

Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается.

Стабилизатор тока на транзисторах

Вместо биполярного транзистора VT2, можно применить MOSFET – полевой транзистор.

Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET.

Стабилизатор тока на полевом транзисторе

Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:

Микроэлектронные стабилизаторы напряжения

Микроэлектронные стабилизаторы напряжения. Рассмотрены пути миниатюризации стабилизированных вторичных источников электропитания и их схемотехника

Основное внимание уделено гибридным и монолитным микроэлектронным стабилизаторам, а также стабилизаторам, которые выполнены с применением интегральных схем. Проведен анализ ряда элементов и узлов, используемых в микроэлектронных стабилизаторах, в том числе: транзисторных и диодных матриц, интегральных и операционных усилителей, составных транзисторов, транзисторных диодов и стабилитронов, стабилизаторов тока и источников опорного напряжения, устройств защиты, а также наиболее известных схем зарубежных монолитных и гибридных микроэлектронных стабилизаторов

Понятие об электрическом напряжении

Определение 1

Электрическое напряжение представляет физическую величину, зависимую от работы эффективного электрического поля. Перенос пробного заряда при этом не изменяет распределение других зарядов на источниках поля.

Готовые работы на аналогичную тему

  • Курсовая работа Источники электрического напряжения 480 руб.
  • Реферат Источники электрического напряжения 230 руб.
  • Контрольная работа Источники электрического напряжения 250 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

В общем случае, напряжение создается двумя видами работ:

  • электрических сил: $A_AB^el$;
  • сторонних сил: $A_AB^ex$.

Если на участке цепи не наблюдается действие сторонних сил, т.е. $A_AB^ex$=0, тогда работа по перемещению будет включать только работу потенциального электрополя: $A_AB^el$. При этом электрическое напряжение $U_AB$ будет совпадающим с разностью потенциалов этих двух точек.

Размерность электрического напряжения в системе единиц СИ выражается в вольтах. Понятие напряжения ввел в своей работе в 1827 году Георг Ом, где он предложил гидродинамическую модель электрического тока, с целью объяснить эмпирический закон, открытый им ранее:

$U=IR$

Обозначение электрических элементов на схемах: шкафы, щитки, пульты

Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)

Номер Название Изображение на схеме
1 Автоматический выключатель (автомат)
2 Рубильник (выключатель нагрузки)
3 Тепловое реле (защита от перегрева)
4 УЗО (устройство защитного отключения)
5 Дифференциальный автомат (дифавтомат)
6 Предохранитель
7 Выключатель (рубильник) с предохранителем
8 Автоматический выключатель со встроенным тепловым реле (для защиты двигателя)
9 Трансформатор тока
10 Трансформатор напряжения
11 Счетчик электроэнергии
12 Частотный преобразователь
13 Кнопка с автоматическим размыканием контактов после нажатия
14 Кнопка с размыканием контактов при повторном нажатии
15 Кнопка со специальным переключателем для отключения (стоп, например)

Элементная база для схем электропроводки

При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.

Номер Название Обозначение электрических элементов на схемах
1 Фазный проводник
2 Нейтраль (нулевой рабочий) N
3 Защитный проводник (“земля”) PE
4 Объединенные защитный и нулевой проводники PEN
5 Линия электрической связи, шины
6 Шина (если ее необходимо выделить)
7 Отводы от шин (сделаны при помощи пайки)

Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.