Устройство генератора тока

Содержание

Лава-лампы в Cloudflare

Компания CloudFlare, которая сама заявляет, что через ее сеть проходит «около 10 % мирового трафика», защищает интернет-проекты от DDoS-атак, но и ей самой нужна защита. Трафик, который проходит через сети CloudFlare, шифруется — и в этом помогает сотня разноцветных лава-ламп на «Стене Энтропии».

Лавовая лампа представляет собой стеклянную емкость, заполненную прозрачным маслом и полупрозрачным парафином. Расположенная в нижней части емкости лампочка накаливания нагревает и подсвечивает содержимое цилиндра, при этом происходит «лавообразное» перемещение парафина в масле. Парафин немного тяжелее масла, но при небольшом нагреве становится легче и всплывает.

За движением жидкостей наблюдают несколько камер, делающих моментальные фотоснимки. Снимки преобразовываются в числа, из которых потом генерируются ключи шифрования. За один кадр получается 16 384 бит энтропии.

В двух других офисах CloudFlare используются иные способы получать случайные значения. В Лондоне камера снимает движения трех хаотических маятников, а в Сингапуре поставили счетчик Гейгера, замеряющий показатели радиоактивного распада небольшого кусочка урана. В последнем случае уран используется в качестве «источника данных», поскольку для радиоактивного излучения характерна случайность каждого отдельного акта распада.

Все эти способы работы с данными привлекают внимание к деятельности компании, чья работа часто остается невидимой для обычных клиентов

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.

Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Генераторы переменного тока на транспорте[править | править код]

Автомобильный генератор переменного тока. Приводной ремень снят. Трёхфазные генераторы переменного тока с встроенным полупроводниковым мостовым трёхфазным выпрямителем используются на современных автомобилях для зарядки автомобильного аккумулятора, а также для питания электропотребителей, таких как система зажигания, автомобильная светотехника, бортовой компьютер, система диагностики и других. Постоянство напряжения в бортовой сети поддерживается специализированным регулятором напряжения.

Применение автомобильных генераторов переменного тока позволяет уменьшить габаритные размеры, вес генератора, повысить его надёжность, сохранив или даже увеличив его мощность по сравнению с генераторами постоянного тока.Например, генератор постоянного тока Г-12 (автомобиль ГАЗ-69) весит 11 кг, номинальный ток 20 ампер, а генератор переменного тока Г-250П2 (автомобиль УАЗ-469) при массе 5,2 кг выдаёт номинальный ток 28 ампер. Генераторы переменного тока применяются в гибридных автомобилях, позволяющих совмещать тягу двигателя внутреннего сгорания и электродвигателя. Это позволяет избежать работы ДВС в режиме малых нагрузок, а также реализовывать рекуперацию кинетической энергии, что повышает топливную эффективность силовой установки.

На тепловозах, таких как ТЭ109, ТЭ114, ТЭ129, ТЭМ7, ТЭМ9, ТЭРА1, ТЭП150, 2ТЭ25К применяется электрическая передача переменно-постоянного тока, устанавливаются синхронные трёхфазные тяговые генераторы. Тяговые электродвигатели постоянного тока, вырабатываемая генератором электроэнергия выпрямляется полупроводниковой выпрямительной установкой. Замена генератора постоянного тока на генератор переменного тока позволила снизить массу электрооборудования, резерв может быть использован для установки более мощного дизельного двигателя. Однако тяговый генератор переменного тока не может использоваться как стартер для двигателя внутреннего сгорания, запуск производится генератором постоянного тока для цепей управления.

На опытном тепловозе 2ТЭ137, новых российских локомотивах 2ТЭ25А, ТЭМ21 применяется электрическая передача переменно-переменного тока, с асинхронными тяговыми электродвигателями.

Получение электрического тока

Назначение генератора – в обеспечении всех электрических систем автомобиля энергией. Чтобы в обмотке статора появился электрический ток, ротор должен создавать переменное магнитное поле, вращаясь внутри статора. Для этого используется энергия вращения коленчатого вала двигателя.

На вал ротора устанавливают клинообразный шкив, надежно закрепленный гайкой. Он соединяется с подобным шкивом на коленвале ременной передачей. Ранее для этого использовался вспомогательный ролик, теперь же используется только два шкива с поликлиновым ремнем. Ротор, вращаясь вместе с валом двигателя, создает магнитное поле, на статоре возбуждается напряжение, питающее все элементы системы автомобиля.

На современных автомобилях в шкиве ротора появилась обгонная муфта генератора. Она позволяет существенно продлить срок службы этого устройства и его приводного ремня. При разгоне и торможении, на холостом  ходу, двигатель работает под различными нагрузками, поэтому частота вращения коленчатого вала будет отличаться. Если он резко замедляется, то вал генератора будет по инерции пытаться вращаться с прежней скоростью, что приведет к рывку на ремне и негативно скажется на механическом состоянии всей системы. При постоянном повторении такой ситуации ремень очень скоро, как правило, через 20 тыс. км, просто разорвется.

Обгонная муфта в шкиве генератора состоит и внутренней и внешней обоймы. Внешняя присоединена через ремень к коленвалу, а внутренняя – к валу ротора. В момент резкого замедления вала она проскальзывает и ротор продолжает вращаться по инерции, в то же время подклинивающие элементы не дают ей проскальзывать, когда частота вращения вала увеличивается. В этом устройство и принцип действия генератора постоянного тока на автомобиле схожи с обычным велосипедом, когда при вращении педалей заднее колесо раскручивается, а при их остановке продолжает вращаться по инерции. Теперь ремни генераторов ходят по 100 тыс. км и более.

Устройство генератора переменного тока

Схематическое устройство однофазного 4-полюсного генератора переменного тока. Генератор с вращающимися магнитными полюсами и неподвижным статором.

Автомобильный генератор переменного тока в разрезе. Видны полюсные наконечники.

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой»), нейтральный провод отсутствует.

По конструкции можно выделить:

  • генераторы с неподвижными магнитными полюсами и вращающимся якорем;
  • генераторы с вращающимися магнитными полюсами и неподвижным статором.

Последние получили большее распространение, так как благодаря неподвижности статорной обмотки отпадает необходимость снимать с ротора большой ток высокого напряжения с использованием скользящих контактов (щёток) и контактных колец.

Подвижная часть генератора называется ротор, а неподвижная — статор.

Статор собирается из отдельных железных листов, изолированных друг от друга. На внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора.

Ротор изготавливается, обычно, из сплошного железа, полюсные наконечники магнитных полюсов ротора собираются из листового железа. При вращении между статором и полюсными наконечниками ротора присутствует минимальный зазор, для создания максимально возможной магнитной индукции. Геометрическая форма полюсных наконечников подбирается такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному.

На сердечники полюсов посажены катушки возбуждения, питаемые постоянным током. Постоянный ток подводится с помощью щёток к контактным кольцам, расположенным на валу генератора.

По способу возбуждения генераторы переменного тока делятся на:

  • генераторы, обмотки возбуждения которых питаются постоянным током от постороннего источника электрической энергии, например от аккумуляторной батареи (генераторы с независимым возбуждением).
  • генераторы, обмотки возбуждения которых питаются от постороннего генератора постоянного тока малой мощности (возбудителя), сидящего на одном валу с обслуживаемым им генератором.
  • генераторы, обмотки возбуждения которых питаются выпрямленным током самих же генераторов (генераторы с самовозбуждением). См также бесщёточный синхронный генератор.
  • генераторы с возбуждением от постоянных магнитов.

Конструктивно можно выделить:

  • генераторы с явно выраженными полюсами;
  • генераторы с неявно выраженными полюсами.

По количеству фаз можно выделить:

  • Однофазные генераторы. См. также конденсаторный двигатель, однофазный двигатель.
  • Двухфазные генераторы. См. также двухфазная электрическая сеть, двухфазный двигатель.
  • Трёхфазные генераторы. См. также трёхфазная система электроснабжения, трёхфазный двигатель.

По соединению фазных обмоток трёхфазного генератора:

  • шестипроводная система Тесла (практического значения не имеет);
  • соединение «звездой»;
  • соединение «треугольником»;
  • соединение шести обмоток в виде одной “звезды” и одного “треугольника” на одном статоре.

Наиболее распространено соединение «звездой» с нейтральным проводом (четырёхпроводная схема), позволяющее легко компенсировать фазовые перекосы и исключающее появление постоянной составляющей и паразитных кольцевых токов в обмотках генератора, приводящих к потерям энергии и перегреву.

Так как на практике в электросетях с множеством мелких потребителей нагрузка на разные фазы не является симметричной (подключается разная электрическая мощность, или например, активная нагрузка на одной фазе, а на другой индуктивная или ёмкостная, то при соединении «треугольником» или «звездой» без нейтрального провода можно получить такое неприятное явление как «перекос фаз», например, лампы накаливания, подключенные к одной из фаз, слабо светятся, а на другие фазы подаётся чрезмерно большое электрическое напряжение и включенные приборы благополучно «сгорают».

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой») с нейтральным проводом.

К трёхфазному генератору (соединение «треугольником») подключена активная нагрузка (соединение «треугольником»).

Система питания

В среднем генератор способен проработать на одной заправке около 7-ми часов. В небольших моделях топливный резервуар является частью станины или крепится на ней. Если же генератор используется в стационарном режиме на предприятии, его оснащают внешним баком, который позволяет работать намного дольше. Топливная система большинства генераторов состоит из трубопровода, который доставляет топливо из бака в двигатель и обратно, вентиляции топливного резервуара, топливного насоса, который закачивает горючее из бака в двигатель

Также важной вещью является фильтр топлива, который отделяет от него воду и мусор. Для распыления дизельного топлива в цилиндры служат форсунки

Три фактора, влияющие на качество эксплуатации электрогенераторов

На что нужно обратить внимание при выборе электрогенератора? Это три основные вещи – мощность, вид нагрузки и вид используемого топлива. 1. Мощность электрогенератора

Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома. Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток)

Мощность электрогенератора. Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома

Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток)

1. Мощность электрогенератора. Чтобы правильно подобрать этот параметр генератора, нужно рассчитать суммарную мощность, потребляемую всеми электроприборами вашего дома

Нужно взять во внимание то, что нагрузка от потребителей бывает двух видов: это активная (лампочка, бытовые электроприборы, не имеющие электродвигателей) и реактивная (холодильник, кондиционер, насос, сварочный аппарат, болгарки, дрели, в общем, все потребители, имеющие электрические двигатели или высокий пусковой ток)

Чтобы рассчитать полную мощность потребителей, нужно подсчитать суммарную мощность с учетом всех коэффициентов и небольшого запаса. Примерно это выглядит так.

Рполная = Р1xК1+Р2xК2+ … +РnxКn.
Где K – коэффициент, учитывающий пусковую мощность потребителя.
Коэффициент активной нагрузки для бытовых электроприборов составляет 1-1,3. Для электрических потребителей с реактивной составляющей этот коэффициент условно принимается равным 3.

Электрогенератор газовый бытовой фото

Сумма всех вместе взятых нагрузок и будет определять мощность необходимой вам электростанции, плюс 15% нужно заложить «про запас», поскольку со временем количество электрооборудования имеет свойство увеличиваться. Многие потребители (приборы, в цепь которых включены асинхронные электродвигатели, например, холодильники, электроинструменты) при пуске могут потреблять намного больше электроэнергии, чем указанная в паспортных данных мощность. Если речь идет о дизельной электростанции с заведомо большим запасом мощности, помните, что минимально допустимая нагрузка не может быть меньше 30% мощности электрического генератора.

Бытовой электрогенератор фото

2. Вид нагрузки на электрогенератор. Всем нам известно, что напряжение в сети может быть 220В (230В) и 380В (400В). Бытует мнение, что трехфазные (380В) бытовые электрогенераторы предпочтительнее в виду своей универсальности. Они могут выдавать в сеть как 380В, так и 230В. Но если в ваши планы не входит подключение трехфазных потребителей, то лучше остановиться на однофазной (230В) электростанции.

Электростанция мощностью 6кВт/400В выдает на каждую фазу по 2 кВт, этого может оказаться мало для работы вашего оборудования. В таком случае придется учесть данный нюанс при монтаже электропроводки (часть потребителей посадить на одну фазу, еще часть на другую).

Как выбрать электрогенератор для дома или дачи

3. Используемое топливо. Что выбрать? Дизельную электростанцию или бензогенератор? Бытует мнение, что при потребляемой мощности более 6-8кВт лучше остановиться на дизельном агрегате. Если провести сравнительный анализ бензиновых и дизельных установок одного класса, то можно прийти к выводу, что их надежность практически одинакова. Существенная разница заключается только в их стоимости и стоимости энергоносителя.

С этой точки зрения наиболее выгодными будут газовые электрогенераторы. А если разобраться еще подробнее, то бестопливная энергетика окажется куда более привлекательной. Тут уж выбор за вами. В любом случае, генератор электрического тока, выбранный для использования в конкретных условиях, окажется полезным приобретением.

Автор статьи Александр Куликов

Используемые структуры возбуждения

Все крупные производители изготавливают генераторы, моторы и синхронные компрессоры, которые оснащены инновационными полупроводниковыми структурами, такими как возбуждение трёхфазных агрегатов. В таких ситуациях используется беспроигрышный метод выпрямления переменных токов.

Параметры функционирования:

    • Работа аппарата на холостом ходу.
    • Электроторможение устройства.
    • Функционирование в определённой энергетической структуре с имеющимися нагрузками либо перезагрузками.
    • Возбуждение синхронного генератора может быть немного форсировано в связи с такими критериями, как ток и напряжение, которые отвечают заданной кратности.
    • Подключение к электросети с помощью точной самосинхронизации.

УСТРОЙСТВО И ОБЩИЙ ПРИНЦИП ДЕЙСТВИЯ

Независимо от выбранной схемы включения и особенностей связи основных рабочих узлов, каждая модель генератора состоит из следующих типовых элементов:

  • основание (станина).
  • статор (неподвижный якорь) с набором фазных катушек.
  • вращающийся ротор (индуктор).
  • токосъемный узел с контактными кольцами и щетками.

При представленном устройстве принцип работы электрогенератора состоит во взаимодействии двух электромагнитных полей, одно из которых создается в индукторе, а второе – в обмотках статора.

Согласно закону э/м индукции Максвелла при вращении поля ротора внутри замкнутой системы статорных отмоток, в последних наводится ЭДС переменной величины и направления. Последняя и является источником переменного электрического тока синусоидальной формы, протекающего в подключенным к генератору нагрузкам.

Основная задача любого генератора

Главная задача абсолютно любого электрического генератора — это выработка электричества. Но, откровенно говоря, генератор ничего не производит, он лишь трансформирует один вид энергии в другой.

И в основном происходит трансформация механической энергии в электрическую энергию.

В свою очередь механическую энергию получают в результате вращения турбин под действием расширения пара, падения воды и даже ручным приводом.

Так вот генераторы, которые работают на механическом приводе – это пока основной тип преобразователей во всем мире.

Наглядный пример работы простого генератора:

На вращающемся роторе закрепляют либо обмотку намагничивания, либо же неодимовые магниты (ранее закрепляли обычные магниты).

Во всех генераторах принцип работы основан на явлении электромагнитной индукции, согласно которому изменяющийся магнитный поток запускает процесс индуцирования вокруг этого пространства электрического поля.

И если в ту область, где проявляет свое действие индуцированное электрическое поле, направить проводник, то в нем будет наведено ЭДС.

А между концами этого проводника можно будет измерить соответствующее напряжение.

Изменение магнитного потока в генераторе происходит за счет того, что совместно с ротором перемещаются магниты либо же полюсные наконечники намагниченные специализированными обмотками.

При этом проводник, в оном происходит наведение ЭДС в генераторе, выполнен в виде обмотки статора, которая располагается, в большинстве случаев в магнитопроводе. Он размещен на стационарной части установки. При этом данный тип обмотки может быть реализован по различному.

При этом в трехфазных генераторах переменного исполнения обмотки статора могут соединяться между собой либо по схеме «Звезда», либо по схеме «Треугольник».

При этом вариант соединения «Звезда» дает возможность получения более высокого напряжения, чем при соединении обмоток «Треугольником».

При этом напряжение будет различаться приблизительно на 1,73. При этом верно утверждение: чем выше напряжение на генераторе, тем меньший ток он способен отдать в сеть.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.