Принцип работы фотодиода, схема и устройство фотодиода

Недостатки классических подходов

Для начала вспомним как работает фотодиод: при внешнем освещении он начинает вырабатывать небольшой фототок, порядка сотни наноампер. Затем этот ток либо усиливается и передается, либо наоборот, передается и в приемнике усиливается. Первый подход требует отдельного источника питания, а это, в свою очередь, вынуждает применять трехпроводные кабели и разъемы.

Да и сам усилитель, даже будучи собранным на SMD, занимает ценное пространство пробника и, скорее всего, потребует применение печатной платы, что неудобно. Второй подход порождает иные проблемы. Подключив фотодиод к длинному кабелю, можно столкнуться при передаче с наводками и утечками, а если вход у прибора высокоомный, то и с емкостью самого кабеля, которая ограничит частотный диапазон работы. Данный способ имеет право на жизнь, если соединительная линия имеет небольшую длину и в приемном устройстве применяется приличный усилитель. В нашем же случае на такой усилитель рассчитывать не стоит. А учитывая и то, что тахометр эксплуатируется  в условиях сильных электромагнитных помех, такой подход просто неприменим. Тут требуется иное решение.

Лавинный фотодиод

В волоконно-оптических системах связи помимо pin фотодиодов применяются лавинные фотодиоды (ЛФД).

ЛФД отличаются от ПИН фотодиодов наличием дополнительного р-слоя. Количество легирующих примесей подбирается так, что наибольшее сопротивление имеет р-слой. Это приводит к тому, что наибольшее падение напряжения происходит в р-слое. Фотон попадая в светочувствительный i-слой выбивает электрон, который устремляется к аноду. Соответствующая электрону дырка движется к катоду.

Электрон на своем пути попадает в зону высокого напряжения р-слоя. Здесь скорость электрона резко возрастает и становится достаточной для выбивания с внешней орбиты атомов р-слоя других электронов. Новые свободные электроны в свою очередь сбивают с валентных слоев дополнительные электроны. Процесс нарастает лавинообразно. Поэтому этот тип фотодиодов называется лавинным.

На рисунке показано резкое усиление электродвижущей силы в зоне р-слоя. Первичный ток, возникший в и-слое, лавинообразно усиливается в р-слое. Коэффициент умножения может достигать нескольких сотен. Слишком большое умножение приводит к большим шумам, которые увеличиваются быстрее сигнала. Оптимальный коэффициент умножения находится в пределах от30 до 100.

Принцип работы фотодиодов

Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.

  • При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
  • Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
  • Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
  • Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
  • Чем выше освещенность, тем больше обратный ток

Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.

5.1. Определение фотодетектора. Виды фотодетекторов. Требования к фотодетекторам

Фотодетектором (фотоприёмником) называют устройство, преобразующее оптическую энергию в электрическую.

В фотодетекторах используются два фотоэффекта: фотогальванический и фотопроводимости.

Приборы на основе фотогальванического эффекта: фотодиоды, фототранзисторы, солнечные элементы.

Эффект фотопроводимости используется в фоторезисторах.

К фотодетекторам оптических систем связи предъявляются следующие требования:

высокая чувствительность;

требуемые спектральные характеристики и широкополосность;

низкий уровень шумов;

требуемое быстродействие;

длительный срок службы;

использование в интегральных схемах совместно с оптическими усилителями.

В большой степени этим требованиям отвечают фотодиоды.

Фотодиод – прибор, электрические свойства которого изменяются под действием падающего на него излучения.

В технике оптической связи наибольшее применение получили p-i-n фотодиоды и лавинные фотодиоды (ЛФД). Перспективными приборами для высокоскоростных систем являются фотодиоды бегущей волны TAP (Travelling-Wave Photodetectors), используемые на скорости от 10Гбит/с до 160Гбит/с и выше. В этих приборах, фотодетектирование сочетается с оптическим усилением в полупроводниковом оптическом усилителе .

Квантовая эффективность

Квантовая эффективность излучателя определяется как отношение числа выделенных электронов к числу падающих фотонов. У кремния и InGaAs пиковая квантовая эффективность около 80%.

Интересно почитать: фотореле в уличном освещении.

Скорость ответа

Скорость ответа детектора ограничена временем прохода, которое является временем преодоления свободными зарядами ширины внутреннего слоя. Это функция напряжения обратного смещения и физической ширины. Для быстрых p-i-n-диодов она колеблется от 1,5 до 10 нс. Емкость также влияет на ответ устройства, причем емкость перехода образует изолирующим внутренним слоем между электродами, образованными p- и n-областями. У высокоскоростных фотодиодов время ответа может достигать 10 пикосекунд при емкости в несколько пикофарад с очень маленькими площадями поверхностей.

Вольтамперная характеристика

Типичные вольтамперные (I-U) кривые для кремниевого p-i-n-фотодиода показа, на рис. 6.11. Можно видеть, что даже когда нет оптической мощности, течет небольшой обратный ток, который называется темновым током (dark current). Он вызывается температурным образованием свободных носителей зарядов, обычно удваиваясь через каждые 10°С прироста температуры после 25°С.

Будет интересно Что такое транзистор

Динамический диапазон

Линейная зависимость между напряжением и оптической мощностью, показанная на рис. 6.11 сохраняется обычно на протяжении около шести десятков, давая динамический диапазон около 50 дБ.

Фотодиод на схеме.

Основные параметры

Свойства фотодиодов определяют следующие характеристики:

  • Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
  • Спектральная. Характеризует влияние длины световой волны на фототок
  • Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
  • Порог чувствительности – минимальный световой поток, на который реагирует диод
  • Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
  • Инерционность

Понятие фотодиода

Фотодиод, ФД — это полупроводниковая деталь, тот же диод, как и он пропускает ток в одну сторону, с p-n (p-i-n) переходом, но из материала, который меняет свои качества при влиянии оптического излучения, инициируя процессы, создающие электроток.

Если свет полностью отсутствует, не падает на такую радиодеталь, то она в спокойном состоянии, в равновесии, имеет качества аналогичные простому диоду.

Если же на чувствительный участок попадает УФ или ИК-излучение, то элемент начинает реагировать, преобразовывать этот поток в электричество.

Надо отличать разные радиодетали с приставкой «фото»:

  • рассматриваемый нами фотодиод. Кратко выразить суть «фото» или «опто», «гальванического» (такие названия применяют реже) диода, которая сразу же отличит его, можно одним предложением: деталь преобразует свет в ток;
  • фототранзисторы. «Два в одном», это объединенные одним корпусом фотоэлемент и транзистор, который открывается от количества подаваемого света. То есть, если на рассмотренных ниже нами схемах эти элементы разнесены, то в данном случае они в одной опрессовке. Вместо связки отдельных указанных деталей можно применить такую цельную запчасть, если она подходит по параметрам;
  • фоторезисторы. Меняют сопротивление (тут это ключевой параметр) в зависимости от уровня освещенности.

Как видим, «фото» радиодетали можно применять для очень схожих, в некоторых случаях аналогичных целей (например, датчики, реле), но схемы будут разными с учетом отличий принципа работы каждого типа.

Обозначение на схемах разных элементов надо также знать. Фотодетектор имеет две стрелки, направленные к нему, и в такой графике есть логика: изделие воспринимает излучение.

Светодиод часто сотрудничает в схемах с фотодиодом. Первый инициирует сработку второго: его ставят напротив, и когда включают, поток света падает на первый элемент, активизирует его, а тот подает сигнал исполнительному узлу. Такой принцип применен для пультов ДУ, разнообразных приемников ИК-сигналов, а также для оптических (лазерных) сигнализаций, активируемых, если злоумышленником пересекается световой поток.

Итак, фотоэлемент преобразует свет, попадающий на его чувствительный сегмент, в электрозаряд. Такой процесс происходит, из-за возникновения особых процессов при движении частичек-транспортировщиков заряда на атомном уровне при облучении p-n зоны. Данное явление обуславливается изменениями свойств применяемых материалов (полупроводников).

Если на фоторезисторах меняется именно проводимость при движении транспортировщиков заряда, то на фотодиодах появляется ток на сегментах смыкания p-n переходов — в этом их отличие.

Структура

Обычный светодиод имеет такую же структуру, как и «фото», но у последнего есть окошечко, чтобы свет попадал на воспринимающую его часть.

Фотодиод схема структуры:

Понятие фотодиода

Фотодиод, ФД — это полупроводниковая деталь, тот же диод, как и он пропускает ток в одну сторону, с p-n (p-i-n) переходом, но из материала, который меняет свои качества при влиянии оптического излучения, инициируя процессы, создающие электроток.

Если свет полностью отсутствует, не падает на такую радиодеталь, то она в спокойном состоянии, в равновесии, имеет качества аналогичные простому диоду.

Если же на чувствительный участок попадает УФ или ИК-излучение, то элемент начинает реагировать, преобразовывать этот поток в электричество.

Надо отличать разные радиодетали с приставкой «фото»:

  • рассматриваемый нами фотодиод. Кратко выразить суть «фото» или «опто», «гальванического» (такие названия применяют реже) диода, которая сразу же отличит его, можно одним предложением: деталь преобразует свет в ток;
  • фототранзисторы. «Два в одном», это объединенные одним корпусом фотоэлемент и транзистор, который открывается от количества подаваемого света. То есть, если на рассмотренных ниже нами схемах эти элементы разнесены, то в данном случае они в одной опрессовке. Вместо связки отдельных указанных деталей можно применить такую цельную запчасть, если она подходит по параметрам;
  • фоторезисторы. Меняют сопротивление (тут это ключевой параметр) в зависимости от уровня освещенности.

Как видим, «фото» радиодетали можно применять для очень схожих, в некоторых случаях аналогичных целей (например, датчики, реле), но схемы будут разными с учетом отличий принципа работы каждого типа.

Обозначение на схемах разных элементов надо также знать. Фотодетектор имеет две стрелки, направленные к нему, и в такой графике есть логика: изделие воспринимает излучение.

Светодиод часто сотрудничает в схемах с фотодиодом. Первый инициирует сработку второго: его ставят напротив, и когда включают, поток света падает на первый элемент, активизирует его, а тот подает сигнал исполнительному узлу. Такой принцип применен для пультов ДУ, разнообразных приемников ИК-сигналов, а также для оптических (лазерных) сигнализаций, активируемых, если злоумышленником пересекается световой поток.

Итак, фотоэлемент преобразует свет, попадающий на его чувствительный сегмент, в электрозаряд. Такой процесс происходит, из-за возникновения особых процессов при движении частичек-транспортировщиков заряда на атомном уровне при облучении p-n зоны. Данное явление обуславливается изменениями свойств применяемых материалов (полупроводников).

Если на фоторезисторах меняется именно проводимость при движении транспортировщиков заряда, то на фотодиодах появляется ток на сегментах смыкания p-n переходов — в этом их отличие.

Структура

Обычный светодиод имеет такую же структуру, как и «фото», но у последнего есть окошечко, чтобы свет попадал на воспринимающую его часть.

Фотодиод схема структуры:

Разновидности фотодиодов

P-i-n

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Темновой ток

Основная неидеальность, влияющая на фотодиодные системы, называется темновым током, потому что это ток, который течет через фотодиод даже при отсутствии освещения. Полный ток, протекающий через диод, представляет собой сумму темнового тока и фототока. Темновой ток ограничивает способность системы точно измерять низкие интенсивности света, если эти интенсивности создают фототоки величиной, аналогичной величине темнового тока.

Вредное влияние темнового тока можно уменьшить с помощью методов, которые вычитают из тока диода ожидаемый темновой ток. Однако темновой ток сопровождается темновым шумом, то есть формой дробового шума, наблюдаемой как случайные изменения величины темнового тока. Система не может измерять интенсивность света, фототок которой настолько мал, что теряется в этом темновом шуме.

Варианты, типы фотодетекторов

Инфракрасный фотодиод выполнен в черном корпусе, реагирует только на ИК-излучение. Темный цвет линзы — это подобие фильтрующей тонировки, чтобы не срабатывать на иные спектры.

У фотодетекторов есть диапазон частот, тут она больше на порядки, до 10 МГц (намного выше, чем у фоторезисторов), что обеспечивает отличное быстродействие. У вариантов p-i-n и с барьером Шоттки эта цифра 100 МГц–1ГГц, у лавинных — 1–10 ГГц.

Типы фотодиодов по принципу работы, по вариантам комбинации, размещения слоев, материалов рассмотрим ниже.

Фотодиод p-i-n

Элементы типа p-i-n широко распространены для волоконно-оптических систем связи — они преобразуют свет в электросигналы, преобразовывающиеся затем в информацию (видео, звуковая и прочие)

Прослойки p и n изготовляют с применением легирования: в материал полупроводника добавляют усиливающие его примеси. Если в обозначении такой детали есть +, то это свидетельствует о повышенном содержании добавок.

Средний сегмент — часть «i» — это проводник «n», но слаболегированный. Если на него подается обратное напряжение, то там образуется обедненная локация (дырок/электронов становится меньше).

Сопротивление на i-сегменте растет, намного превышает таковое на р+ и n+. Итог указанного процесса: электрополе сосредотачивается в i-области, фотон, поглощаемый там, создает пару: электрон/дырка. Мощное поле на i-участке мгновенно распределяет их на электроды: дырку поглощает катод, электрон — анод. Так создается электроток.

Эффективность p-i-n фотодиодов чрезвычайно высокая, так как их частота может достигать 1010 Гц, что гарантирует передачу за 1 секунду терабайтов данных. У таких деталей i-участок намного шире, чем p+ и n+ для того, чтобы фотоны осваивались бы больше именно на этом сегменте.

Лавинные

В волоконно-оптических технологиях кроме p-i-n типов рассматриваемых деталей используются особые виды — лавинные фотодетекторы (ЛФД), их отличие — дополнительный p-участок.

Из-за укрепляющих добавок более высокое сопротивление у p-слоя, соответственно, наибольшее понижение напряжения на нем. Фотон, оказываясь в светосенситивном i-сегменте, вырывает оттуда электрон, устремляющийся к аноду, дырка идет к катоду.

Электрон на своем маршруте оказывается на локации большого напряжения p-слоя, тут он резко ускоряется, что позволяет выбивать с оболочек атомы p-участков иные такие же частицы. Затем новообразовавшиеся свободные electron делают то же — выбивают из валентных сегментов дополнительные их аналоги. Явление растет лавинообразно.

На изображении визуализировано резкий всплеск движущей электросилы на p-слое. Ток первичный, появившийся в i-слое, растет лавиной на p-участке. Повышение достигает несколько сотен раз, но если оно слишком большое, то создает шумы, увеличивающиеся быстрее импульса. Оптимальное значение коэффициента 30–100.

С барьером Шоттки

В данном типе элементов создается несколько пленок, то есть особая структура, позволяющая избегнуть инжекции неосновных носителей. Такие детали используют движение только основных транспортировщиков. Плюс в том, что нет медленных процессов, подпадающих под влияние явлений накопления, рассасывания второстепенных носителей на базе диода. Плюсы: инерционность, сроки перезарядки ничтожные, первая обусловлена только временем прохода носителей через области пространственного заряда.

Указанные выше способности позволяют применять оптодиоды при СВЧ модуляциях излучений.

Гетероструктурные

Собираются из 2 полупроводников с разным размером запрещенного сегмента, гетерогенным именуют участок между ними. Особым подбором материалов создают устройство, охватывающее (воспринимающее) полную протяженность волн. Минус такого изделия — затратность изготовления.

Режимы работы фотодиодов

В результате накопления дырок и электронов соответственно в р-слое и в n-слое, образуется разность потенциалов – электродвижущая сила, которая создает обратный ток, от катода к аноду. Во внешней цепи ток будет от анода к катоду. То есть имеем солнечную электрическую батарею. В зависимости от того, как используется эффект превращения света в электрический ток, фотодиоды делятся на:

  • Фотогенераторы – всем известные солнечные панели, которые применяют для питания калькуляторов, различных приборов в космических аппаратах и многих других;
  • Фотопреобразователи – служат для управления различными устройствами. Например, фонари уличного освещения выключаются автоматически после восхода солнца. Ночью, при отсутствии света, фотодиод ведет себя, как обычный диод, пропускает ток. Днем запирает.

Квантовая эффективность

Квантовая эффективность излучателя определяется как отношение числа выделенных электронов к числу падающих фотонов. У кремния и InGaAs пиковая квантовая эффективность около 80%.

Скорость ответа

Скорость ответа детектора ограничена временем прохода, которое является временем преодоления свободными зарядами ширины внутреннего слоя. Это функция напряжения обратного смещения и физической ширины. Для быстрых p-i-n-диодов она колеблется от 1,5 до 10 нс. Емкость также влияет на ответ устройства, причем емкость перехода образует изолирующим внутренним слоем между электродами, образованными p- и n-областями. У высокоскоростных фотодиодов время ответа может достигать 10 пикосекунд при емкости в несколько пикофарад с очень маленькими площадями поверхностей.

Вольтамперная характеристика

Типичные вольтамперные (I-U) кривые для кремниевого p-i-n-фотодиода показа, на рис. 6.11. Можно видеть, что даже когда нет оптической мощности, течет небольшой обратный ток, который называется темновым током (dark current). Он вызывается температурным образованием свободных носителей зарядов, обычно удваиваясь через каждые 10°С прироста температуры после 25°С.

Динамический диапазон

Линейная зависимость между напряжением и оптической мощностью, показанная на рис. 6.11 сохраняется обычно на протяжении около шести десятков, давая динамический диапазон около 50 дБ.

Температурная устойчивость

Обнаружители состоят из тонкой пленки на стеклянной подложке. Эффективная форма и рабочая площадь фотопроводящей поверхности могут значительно варьироваться в зависимости от условий эксплуатации. При этом рабочие характеристики прибора также меняются, в частности – чувствительность детектора изменяется в зависимости от рабочей температуры. Температурные характеристики запрещенных полос в соединениях PbS и PbSe отрицательны, поэтому охлаждение детектора сдвигает диапазон спектрального отклика на область более длинных волн. Для достижения наилучших результатов рекомендуется использовать фотодиоды в стабильной среде.

Источник

особенности

Отклик кремниевого фотодиода в зависимости от длины волны падающего света

Критические рабочие параметры фотодиода включают спектральную чувствительность, темновой ток, время отклика и мощность, эквивалентную шуму.

Спектральная чувствительность
Спектральная чувствительность — это отношение генерируемого фототока к мощности падающего света, выраженное в А/W при использовании в фотопроводящем режиме. Зависимость от длины волны также можно выразить как квантовая эффективность или отношение количества фотогенерированных носителей к падающим фотонам, которое является безразмерной величиной.
Темный ток
Темновой ток — это ток через фотодиод в отсутствие света, когда он работает в фотопроводящем режиме. Темновой ток включает фототок, создаваемый фоновым излучением, и ток насыщения полупроводникового перехода. Темновой ток необходимо учитывать калибровка если фотодиод используется для точного измерения оптической мощности, а также является источником шум когда фотодиод используется в системе оптической связи.
Время отклика
Время отклика — это время, необходимое детектору для ответа на оптический вход. Фотон, поглощенный полупроводниковым материалом, будет генерировать пару электрон-дырка, которая, в свою очередь, начнет перемещаться в материале под действием электрического поля и, таким образом, будет генерировать текущий. Конечная продолжительность этого тока известна как разброс времени прохождения и может быть оценена с помощью Теорема Рамо. С помощью этой теоремы также можно показать, что полный заряд, генерируемый во внешней цепи, равен е а не 2e, как можно было бы ожидать по наличию двух носителей. Действительно, интеграл тока, создаваемого как электроном, так и дыркой, с течением времени должно быть равно e. Сопротивление и емкость фотодиода и внешней схемы приводят к другому времени отклика, известному как Постоянная времени RC (τ=рC{ Displaystyle тау = RC}). Эта комбинация R и C интегрирует фотоответ с течением времени и, таким образом, удлиняет импульсивный ответ фотодиода. При использовании в системе оптической связи время отклика определяет полосу пропускания, доступную для модуляции сигнала и, следовательно, передачи данных.
Мощность, эквивалентная шуму
Шумоэквивалентная мощность (NEP) — это минимальная входная оптическая мощность для генерации фототока, равная среднеквадратичному шумовому току в 1герц пропускная способность. NEP — это, по сути, минимальная обнаруживаемая мощность. Связанные характерная обнаруживающая способность (D{ displaystyle D}) — это противоположность нэпа (1 / нэп) и специфическая обнаруживаемость (D⋆{ displaystyle D ^ { star}}) — это обнаружительная способность, умноженная на квадратный корень из площади (А{ displaystyle A}) фотоприемника (D⋆=DА{ displaystyle D ^ { star} = D { sqrt {A}}}) для полосы пропускания 1 Гц. Удельная обнаруживающая способность позволяет сравнивать разные системы независимо от области датчика и полосы пропускания системы; более высокое значение обнаруживаемости указывает на устройство или систему с низким уровнем шума. Хотя традиционно дарить (D⋆{ displaystyle D ^ { star}}) во многих каталогах как показатель качества диода, на практике он практически не является ключевым параметром.

Когда фотодиод используется в системе оптической связи, все эти параметры вносят вклад в чувствительность оптического приемника, что является минимальной входной мощностью, необходимой приемнику для достижения заданной частота ошибок по битам.

Фототранзистор

Чувствительность

Токовая чувствительность S i , Φ {\displaystyle S_{i,{\Phi }}} по световому потоку фототранзистора определяется отношением тока через прибор I Φ {\displaystyle I_{\Phi }} к вызвавшему этот ток световому потоку Φ {\displaystyle \Phi } :

S i , Φ = I Φ Φ {\displaystyle S_{i,{\Phi }}={\frac {I_{\Phi }}{\Phi }}}

Токовая чувствительность современных фототранзисторов достигает нескольких сотен /.

Темновой ток

Даже в отсутствие освещения, через прибор протекает некоторый ток, называемый темновым током. Этот ток вреден для регистрации слабых световых потоков, так как «маскирует» полезный сигнал и при изготовлении фототранзисторов его стремятся уменьшить разными технологическими приемами. Кроме того, величина темнового тока существенно зависит от температуры полупроводниковой структуры и нарастает при её повышении приблизительно так же, как и обратный ток p-n перехода в любом полупроводниковом приборе. Поэтому для снижения темнового тока иногда применяют принудительное охлаждение прибора.

При прочих равных, величина темнового тока сильно зависит от ширины запрещённой зоны полупроводника и снижается при её увеличении. Поэтому характерные значения темнового тока при комнатной температуре германиевых фототранзисторов порядка единиц мкА, кремниевых — долей мкА, арсенидо-галлиевых — десятков пкА.

Спектральная чувствительность

Типовая спектральная чувствительность кремниевого фототранзистора Чувствительность фототранзистора зависит от длины волны падающего излучения. Например, для кремниевых приборов максимум чувствительности находится в диапазоне 850—930 нм — красный и ближний инфракрасный диапазоны. Для ближнего ультрафиолетового излучения (~400 нм) чувствительность снижается в ~10 раз от максимальной. Также чувствительность снижается при увеличении длины волны и для длин волн свыше ~1150 нм — край оптической полосы поглощения кремния, снижается до нуля.

Быстродействие

Фототранзисторы по сравнению с фотодиодами имеют относительно низкое быстродействие. Это обусловлено конечным временем рассасывания неосновных носителей в базе при снижении освещённости. Кроме того, если напряжение между коллектором и эмиттером изменяется при изменении освещенности, что имеет место в некоторых схемах электрического включения прибора, дополнительно снижает быстродействие эффект Миллера, обусловленный емкостью коллекторно-базового p-n перехода. Практически диапазон рабочих частот фототранзисторов ограничен, в зависимости от схемы включения, несколькими сотнями кГц — единицами МГц.