Виды электроизоляционных материалов их применение

Сферы применения электроизоляторов

Высоковольтные провода — устройство и применение

Чтобы выяснить, где применяются электроизоляторы, достаточно просто вспомнить, где распространена электропроводка. Это могут быть как бытовые системы электроснабжения и электроосвещения, так и промышленные. В электрических силовых кабелях, прокладываемых снаружи и под землей, содержится несколько слоев такой изоляции. В приборостроении отдельные элементы конструкции приборов также приходится изолировать от напряжения. Это могут быть как небольшие элементы разных плат, так и целые узлы. Такая изоляция позволяет сохранить эксплуатационные характеристики материалов, расположенных вблизи токоведущих жил.

Магнитные материалы

Показатели оценки магнитных свойств носят название магнитных характеристик:

  • магнитная абсолютная проницаемость;
  • магнитная относительная проницаемость;
  • термический магнитный коэффициент проницаемости;
  • энергия максимального магнитного поля.

Магнитные материалы подразделяются на твердые и мягкие. Мягкие элементы характеризуются небольшими потерями при отставании величины намагниченности тела от действующего магнитного поля. Они более проницаемы для магнитных волн, имеют небольшую коэрцитивную силу и повышенную индукционную насыщаемость. Используют их при устройстве трансформаторов, электромагнитных машин и механизмов, магнитных экранов и других приборов, где нужно намагничивание с малыми энергетическими упущениями. К ним относят чистое электролитное железо, железо – армко, пермаллой, электротехническую сталь в листах, никелево-железные сплавы.

Твердые материалы характеризуются значительными потерями при отставании степени намагниченности от внешнего магнитного поля. Получив один раз магнитные импульсы, такие электротехнические материалы и изделия намагничиваются, и долгое время сохраняют накопленную энергию. Они обладают большой коэрцитивной силой и большой емкостью остаточной индукции. Элементы с такими характеристиками применяют для изготовления стационарных магнитов. Представителями элементов служат сплавы на железной основе, алюминиевые, никелевые, кобальтовые, кремниевые компоненты.

Композиционные материалы

Материалы, которые подразделяются не по функционированию, а по составу, называются композиционными материалами, это тоже электротехнические материалы. Их свойства и применение обусловлены сочетанием применяемых при изготовлении материалов. Примером служат листовые стекловолокнистые компоненты, стеклопластик, смеси электропроводного и тугоплавкого металлов. Применение равноценных смесей позволяет выявить сильные стороны материала и применять их по назначению. Иногда сочетание композитных составляющих приводит к созданию абсолютно нового элемента с другими свойствами.

Характеристики электроизоляторов

Одной из главных характеристик диэлектриков является поверхностное сопротивление. Это сопротивление, которое возникает в момент прохождения тока по поверхности материала. Следующей по значимости характеристикой можно назвать диэлектрическую проницаемость. Как уже говорилось, проницаемость напрямую связана с пробиваемостью целевого материала. И отдельного внимания заслуживают физико-химические характеристики. В их числе отмечают водопоглощаемость, вязкость и кислотность. Водопоглощаемость указывает на степень пористости материала и присутствие в нем водорастворимых элементов. Чем выше это значение, тем выше эффективность материала как диэлектрика

В свою очередь, вязкость характеризуется текучестью, что важно для определения взаимодействия материала с жидкостными или расплавленными диэлектриками. Кислотным числом обычно характеризуются жидкие диэлектрики

Например, основные особенности электроизоляционных материалов сводятся к способности нейтрализовать свободные кислоты, содержащиеся в 1 г материала. Присутствие свободных кислот понижает электроизоляционные качества электроизоляторов.

Летероид

Тонкая фибра выпускается в листах и скатывается в рулон для транспортировки. Применяется как материал для изготовления прокладок изоляции, фасонных диэлектриков, шайб. Бумагу с асбестовой пропиткой и асбестовый картон делают из хризолитового асбеста, расщепляя его на волокна. Асбест обладает сопротивлением к щелочной среде, но разрушается в кислотной.

В заключение следует отметить, что с применением современных материалов для изоляции электрических приборов значительно увеличился срок их службы. Для корпусов установок применяют материалы с выбранными характеристиками, что дает возможности для выпуска новой функциональной техники с улучшенными показателями.

Электроизоляционные материалы и их применение

Электроизоляционные
материалы широко применяются в промышленности, радио- и
приборостроении, развитии электрических сетей. Нормальная работа
электрического прибора или безопасность схемы электроснабжения во многом
зависит от используемых диэлектриков. Некоторые параметры материала,
предназначенного для электрической изоляции, определяют его качество и
возможности.

Применение изоляционных материалов обусловлено
правилами безопасности. Целостность изоляции является залогом безопасной
работы с электрическим током. Весьма опасно использовать приборы с
поврежденной изоляцией. Даже незначительный электрический ток может
оказать воздействие на организм человека.

Электроизоляционные нефтяные масла

Трансформаторное масло, применяемое для силовых трансформаторов, имеет максимальное распространение в электротехнике среди жидких изоляционных материалов. Им заполняют поры в волокнистой изоляции, расстояния между обмотками, увеличивает электрическую прочность изоляции, способствует отводу теплоты. Кроме того, трансформаторное масло активно используется в масляных выключателях высокого напряжения. В таких аппаратах между расходящимися контактами выключателя происходит разрыв электрической дуги, в результате чего канал дуги быстро охлаждается и гасится. Для получения нефтяных минеральных электроизоляционных масел используют нефть, проводя ее ступенчатую перегонку с поэтапным выделением на каждой ступени фракции и детальной очистки от примесей с помощью серной кислоты, последующей промывки и сушки.

Электрическая прочность такого масла представляет собой величину, которая весьма чувствительна к увлажнению. Даже при незначительной примеси воды в масле наблюдается существенное снижение данной физической величины. При действии электрического поля, происходит втягивание капелек эмульгированной воды в те места, в которых напряженность поля имеет максимальное значение, в результате чего и развивается пробой.

При резком понижении электрической прочности масла в нем присутствуют не только молекулы воды, но и волокнистые примеси. Они впитывают воду, что существенно сказывается на электрических характеристиках жидкого диэлектрика.


Смотреть галерею

Особенности газообразного состояния

Газообразные диэлектрики имеют незначительную электропроводность в том случае, если напряженность поля принимает минимальные значения. Возникновение тока в газообразных веществах возможно только в тех случаях, когда в них присутствуют свободные электроны либо заряженные ионы.

Газообразные диэлектрики являются качественными изоляторами, поэтому используются в современной электронике в больших объемах. Ионизация в таких веществах обуславливается внешними факторами.

Из-за соударений ионов газа, а также при термическом воздействии, ультрафиолетовом или рентгеновском действии, наблюдается и процесс образования нейтральных молекул (рекомбинация). Благодаря этому процессу ограничивается увеличение количества ионов в газе, устанавливается определенная концентрация заряженных частиц через короткий временной промежуток после воздействия внешнего источника ионизации.

В процессе возрастания напряжения, прикладываемого к газу, увеличивается движение ионов к электродам. Они не успевают рекомбинироваться, поэтому осуществляется их разряжение на электродах. При последующем повышении напряжения ток не возрастает, его именуют током насыщения.

Рассматривая неполярные диэлектрики, отметим, что воздух является совершенным изолятором.

Проводниковые материалы

Благодаря хорошей электропроводности и относительной дешевизне в качестве проводниковых материалов в электрических машинах широко применяется электротехническая медь, а в последнее время также рафинированный алюминий. Сравнительные свойства этих материалов приведены в таблице 1. В ряде случаев обмотки электрических машин изготовляются из медных и алюминиевых сплавов, свойства которых изменяются в широких пределах в зависимости от их состава. Медные сплавы используются также для изготовления вспомогательных токоведущих частей (коллекторные пластины, контактные кольца, болты и так далее). В целях экономии цветных металлов или увеличения механической прочности такие части иногда выполняются также из стали.

Таблица 1

Физические свойства меди и алюминия

Материал Сорт Плотность, г/см3 Удельное сопротивление при 20°C, Ом×м Температурный коэффициент сопротивления при ϑ °C, 1/°C Коэффициент линейного расширения, 1/°C Удельная теплоемкость, Дж/(кг×°C) Удельная теплопроводность, Вт/(кг×°C)
Медь Электротехническая отожженная 8,9 (17,24÷17,54)×10-9 1,68×10-5 390 390
Алюминий Рафинированный 2,6-2,7 28,2×10-9 2,3×10-5 940 210

Температурный коэффициент сопротивления меди при температуре ϑ °C

(1)

Соответственно этому, если сопротивление медной обмотки при температуре ϑx равно rx, то ее сопротивление при температуре ϑг

(2)

Зависимость сопротивления меди от температуры используется для определения повышения температуры обмотки электрической машины при ее работе в горячем состоянии ϑг над температурой окружающей среды ϑо. На основании соотношения (2) для вычисления превышения температуры

Δϑ = ϑг — ϑо

можно получить формулу

(3)

где rг – сопротивление обмотки в горячем состоянии; rx – сопротивление обмотки, измеренное в холодном состоянии, когда температуры обмотки и окружающей среды одинаковы; ϑx – температура обмотки в холодном состоянии; ϑо – температура окружающей среды при работе машины, когда измеряется сопротивление rг.

Соотношения (1), (2) и (3) применимы также для алюминиевых обмоток, если в них заменить 235 на 245.

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

Классы диэлектрических перчаток

В зависимости от максимально допустимого рабочего напряжения различают 5 классов диэлектрических перчаток. Чем выше класс, тем надежнее уровень защиты СИЗ.

Таблица – Классы диэлектрических перчаток

Класс Максимальное напряжение, В Характеристика перчаток
Рабочее Испытательное
00 500 2 500 Преимущественно латексные изделия с минимальными диэлектрическими свойствами. Предназначены для работы с бытовыми электрическими приборами.
1 000 5 000 Перчатки для работы с электрооборудованием до 1000 В. Используются на производственных линиях невысокой мощности.
1 7 500 10 000 Диэлектрические перчатки для работы на электроустановках средней мощности (станки, технологическое оборудование).
2 17 000 20 000 Защитные перчатки (обычно силиконовые) для работы с электроустановками мощностью более 10 кВ. Наиболее популярный класс на производстве. Применяются для обслуживания мощного станочного оборудования, электрогенераторов, автомобильной техники.
3 26 500 30 000 Диэлектрические СИЗ, предназначенные для защиты от электрических нагрузок повышенной мощности. Используются при работе с промышленными электрическими узлами, станочными механизмами. Как правило, такие перчатки имеют дополнительные защитные свойства.
4 36 000 40 000

Также в ГОСТе выполнена классификация диэлектрических перчаток по наличию специальных свойств. Выделяют такие категории изделий:

  • A – устойчивые к воздействию кислоты;
  • H – стойкие к нефтепродуктам;
  • Z – озоностойкие;
  • R – устойчивые к кислотам, нефти, озону (сочетают параметры первых трех категорий);
  • C – морозоустойчивые, могут использоваться при температурах до -40 °C;
  • F – длинные перчатки с повышенной стойкостью к утечке тока.

Рабочий температурный интервал обычных неморозостойких перчаток составляет от -25°C до +55°C. В зависимости от желаемых рабочих характеристик СИЗ специальные категории могут объединяться в любом сочетании.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Гуру 220→Электропроводка→Провода и кабели→

Что обозначают классы и как их присваивают

Классы защиты созданы для безопасной работы с электрическим инструментом. Конструктор, занимающийся изготовлением конкретного электрического прибора, ещё на начальных стадиях разработки решает определенные задачи, чтобы снизить риски при использовании инструмента. Речь идет об использовании определенной защиты, электрических цепей, экстренного отключения питания и так далее.

В зависимости от конструктивных особенностей, разные приборы имеют свои условия эксплуатации. Поэтому их делят на группы с присвоением класса, что указаны в ГОСТ 12.2.007.0-75.

Применяется информация как для инструментов, так и для правил устройства электроустановок (ПУЭ).

Виды изоляции проводов при электромонтажных работах

Хотя с каждым днем появляется все больше беспроводных устройств, основным средством передачи электрического тока по-прежнему остаются провода. При производстве проводов и кабелей используются различные виды изоляции. Каждый вид изоляции проводов определяет область применения тех или иных кабельных изделий. В процессе монтажа проводов или кабелей появляется необходимость в изоляции мест их соединения или подключения к электроприборам. Каким же образом это можно сделать?

Ранее для изоляции кабелей применяли бумагу, но сейчас, при огромном количестве современных материалов ее используют крайне редко. Бумагу наматывали несколькими слоями, пропитывая маслом и канифолью. Это помогало противостоять влиянию влаги. В производственных условиях делают надежную изоляцию из фторопласта. Ленты фторопласта наматывают на провода и запекают. Образуется оболочка, которая не боится не только химического или температурного, но и механического воздействия.

ПВХ изоляция

ПВХ (поливинилхлорид) также называют виниловая изоляция. Поливинилхлорид устойчив к действию щелочей и кислот, не проводит ток, не растворяется в воде, поэтому находит широкое применение при изготовлении изоляционных материалов. Применяется для изготовления изоляции проводов и кабелей. Так же изготавливают ПВХ изоленту, для изоляции соединения проводов. Одно из преимуществ ПВХ изоляции – ее дешевизна. Полимерная изоляция довольно эластична и устойчива к перепадам температур, не горит на воздухе. При производстве ПВХ материалов могут добавлять пластификаторы, они несколько ухудшают изоляционные свойства и стойкость к химикатам, но увеличивают эластичность и устойчивость к воздействию ультрафиолетовых лучей.

Если в соединительном кабеле используется виниловая изоляция, покрывающая провода, то кабель обозначается аббревиатурой ПВС. Он может состоять из 2-5 алюминиевых или медных жил. Оболочка бывает виниловая или резиновая. Срок службы ПВС кабелей превышает 6 лет. В течение всего этого времени они не требуют замены. Они устойчивы к коррозии и плесени, выдерживают морозы до -40° и жару до +40°. Их рабочее сопротивление составляет на 1 км около 270 Ом.

Кабели с ПВХ оболочкой и алюминиевыми жилами применяют в городских электрических сетях, для подачи электричества на производстве и в жилых многоквартирных домах. ПВС кабели с медными жилами получили распространения при подключении к сети практически всех бытовых приборов и другой техники малой мощности, их используют для электропроводки в частных домах и квартирах.

electry.ru

Электроизоляционные материалы.

В условиях большой распространенности различных электроустановок практически во всех отраслях промышленности и хозяйства страны в целом электроизоляционные материалы получили повсеместное применение. Самая важная характеристика электроизоляционных материалов – большое электрическое сопротивление. Электроизоляционные материалы подразделяются на: газообразные (воздух, различные газы); жидкие (различные масла и кремнийорганические жидкости) и твердые – органического происхождения (смолы, пластмассы, парафины, воски, битумы, дерево) и неорганического (слюда, стекло, керамика и др.). Такой электроизоляционный материал, как слюда относится к группе породообразующих минералов, так называемым листовым алюмосиликатам.

Слюда, как электроизоляционный материал, подразделяется на два вида: флогопит—плотность – 2700–2850 кг/м 3 и твердость, по минералогической шкале 2–3 и биотит—плотность – 2700–3100 кг/м 3, твердость, по минералогической шкале 2,5–3.

Наибольшее распространение получили электроизоляционные материалы, создаваемые путем органического синтеза. Эти материалы характеризуются заранее заданными электрическими, физико—химическими и механическими свойствами. К электроизоляционным материалам относится фторопласт–4 – продукт полимеризации тетрафторэтилена, который выпускается в виде белого, легко комкающегося порошка или пластин. Фторопласт–4 в зависимости от назначения подразделяется на следующие марки: «П» – для изготовления электроизоляционной и конденсаторной пленок; «ПН» – для производства электротехнических изделий с повышенной надежностью.

Для изготовления различных электротехнических изделий часто применяются литьевые сополимеры полиамида марок АК–93/7, АК–85/15 и АК–80/20 – продукты совместной поликонденсации соли «АГ» и капролактама. Литьевые сополимеры полиамида имеют диэлектрическую проницаемость при 10 6 Гц после 24–часового пребывания в дистиллированной воде 4–5, а удельное поверхностное электрическое сопротивление (в исходном состоянии) – 1 × 10 14 —1 ×10 15 Ом × см.

Уже на протяжении многих лет для изготовления электроизоляционных изделий применяется литьевой полиамид 610 – продукт поликонденсации соли гексаметилендиамина и се—бациновой кислоты. Изделия получают литьем под давлением, используя полиамид 610 в виде гранул белого и светло—желтого цветов размером 3–5 мм. Полиамид 610 имеет следующие показатели: удельное объемное электрическое сопротивление – не менее 1 × 10 14 Ом × см, электрическую прочность – не менее 20 кВ/мм.

К электроизоляционным материалам относятся применяемые на протяжении нескольких десятилетий аминопласты – прессовочные карбамидо—и меламиноформальдегидные массы, получаемые на основе аминосмол (термореактивных продуктов конденсации формальдегида с карбамидом, меламином или их сочетанием) с использованием наполнителей (органических, минеральных или их сочетания). Аминоплас—ты выпускаются нескольких марок МФБ – светотехнические, МФВ – с повышенными электроизоляционными свойствами, которые имеют удельное объемное электрическое сопротивление 1 × 10 11 —1 × 10 12 Ом × см.

Электроизоляционные лакированные ткани


Лакированные изолирующие ткани

Этот вид диэлектрика характеризуется тем, что изготавливается на основе ткани, пропитанной лаком. Нанесение изолятора на ткань происходит при помощи кисточки. Такой лак образует пленку, обладающую требуемыми диэлектрическими свойствами.

Ткань, применяемая в такой изоляции, преимущественно хлопчатобумажная. Также встречаются материалы на шелковой, капроновой и стеклянной основе. Стекловолокнистая ткань характеризуется повышенной устойчивостью к высоким температурам. Основной сферой применения таких тканей будут являться электрические машины и аппараты, где важна гибкость изоляционного материала.

В этой статье были кратко рассмотрены типы изоляции, свойства и условия применения данного материала. Статья будет полезна как опытным электротехникам, так и впервые пробующим свои силы домашним мастерам. Она поможет подобрать требуемую изоляцию проводников и кабелей, согласно конкретным условиям рабочего процесса.

https://youtube.com/watch?v=lwI8L1vPW-A

Вакуум как изолятор

Газовая среда при крайне низком давлении может создавать условия, когда газ просто не сможет образовывать заметный ток в межэлектродном зазоре. Такие условия называют изоляционным вакуумом. При столкновении с электронами или положительными ионами, которые вылетают из электродов, ионизация молекул газа под низким давлением происходит очень редко. Так называемый высокий вакуум при условии постоянного напряжения до 20 кВ на поверхности катода может обойтись без пробоя при напряженности поля порядка 5 МВ/см. Если речь идет об аноде, то напряженность должна быть в разы выше. И все же заметное увеличение напряжения способствует тому, что вакуумные электроизоляционные материалы утрачивают свой защитный потенциал. Пробой в данном случае может наступать в результате обмена заряженными частицами в связке катод-анод. Диэлектрики такого типа чаще используются в электронике. Их применяют и в целях ускорения электронов в обычных приборах, и в рентгеновских аппаратах для обеспечения высоковольтных приложений.

Изолента

Изоляционная лента или изолента знакома пожалуй каждому. По внешнему виду это узкий (не всегда) рулон цветного или чёрного материала. Внутренняя сторона ленты покрыта клеящим составом для приклеивания. Используется лента накручиванием на место изоляции перекрывающими витками.

По материалу изготовления изоляционная лента бывает:

  • Поливинилхлоридной (ПВХ)
  • Хлопчатобумажной (ХБ)

Первый тип изоленты представлен широким цветовым спектром. ХБ изолента чёрного цвета с характерным запахом резины или битума.

Изолента ПВХ

ПВХ изоленту изготавливают из винила, нанося на одну сторону ленты клеящий состав. Ширина изоленты ПВХ от 15 до 50 мм. Достоинства изоленты ПВХ в высокой эластичности. Недостатки в изменении своих свойств при снижении и повышении температуры. ПВХ изоленты отличные, однако дальше низких напряжения её применение не распространяется.

Изолента ХБ

ХБ изолента характерно чёрного цвета в рулонах шириной 15- 50 мм. Изготавливается из хлопчатобумажных лент из пропиткой в резине и нанесением клеящего слоя на одну сторону. Сочетание хлопка (возможно стеклоткани) делают ХБ ленту устойчиво к колебаниям температур и её применение распространяется на сети напряжением свыше 1000 В.

Современные электроизоляционные материалы

К электроизоляторам нового поколения относится широкая группа полимерных материалов. В основном это пленочные изделия, которые обеспечивают эффект диэлектрика путем создания соответствующей оболочки. Пленка производится в формате рулонов, толщина которых варьируется от 5 до 250 мкм. Помимо основных электроизоляционных свойств, такие пленки характеризуются гибкостью, эластичностью, прочностью и стойкостью на разрыв. Удобна в применении и полимерная изоляционная лента, которая имеет толщину 0,2-0,3 мм. Такие материалы проигрывают многим традиционным диэлектрикам лишь в одном качестве – экологической безопасности. Это не самый безобидный материал в плане токсической угрозы, поэтому его используют по большей части в промышленности, хотя бывают и исключения.

В чем плюсы изоляции из сшитого полиэтилена

Сшитый ПЭ – полиэтилен с улучшенными характеристиками. Его применение в качестве изоляции позволяет тоже придать ей более качественные свойства. К преимуществам изоляции из СПЭ перед другими видами относится следующее:

  • Стойкость к более высоким температурам (предельная достигает 90 °C).
  • Допустимая температура в аварийном режиме, гр. С – 130.
  • Максимально допустимая температура жилы при протекании тока короткого замыкания, гр. С — 250.
  • Более высокая пропускная способность, чем у бумажной с масляной пропиткой – в 1,3-1,5 раза выше, что обусловлено более высокой длительно допустимой температурой (90 °C
  • Экологическая безопасность ввиду отсутствия жидких включений, что позволяет сохранить чистоту окружающей среды.
  • Отсутствие алюминиевых и свинцовых оболочек, что уменьшает вес, диаметр и радиус изгиба (упрощает прокладку).
  • Большая строительная длина, которая может достигать 2000-4000 м.
  • Низкая гигроскопичность, обеспечивающая диэлектрическую стабильность.

Не менее важно, что кабель СПЭ обычно имеет одножильную конструкцию, это упрощает прокладку и монтаж даже в самых тяжелых условиях работы. Ее можно вести при температуре до -20 °C (без предварительного прогрева)

Благодаря перечисленным преимуществам кабель СПЭ признали как продукт, обладающий наилучшими электрическими и механическими свойствами, а также самым длительным сроком службы среди других серийно выпускаемых типов кабелей, достигающим 30 лет без потери качества. (Срок службы).