Что делает многослойные керамические конденсаторы разными?

Лучшие зимние нешипованные шипы для кроссоверов и внедорожников

Самые популярные липучки для внедорожников в 2021 году признаны следующие шины:

  • Hankook Tire Winter I*Cept Evo 2
  • Nokian Tyres WR SUV 4
  • Bridgestone Blizzak DM

Какие шины для зимы без шипов (липучки) вам нравятся больше всего?
Hankook Tire Winter I*Cept Evo 2 47.37%

Nokian Tyres WR SUV 4 10.53%

Bridgestone Blizzak DM 21.05%

Другая 21.05%
Проголосовало: 19

Лучшие высокоскоростные фрикционные шины для внедорожников

 V до 240 км/ч: Hankook Tire Winter I*Cept Evo 2

Предназначена для северной зимы, класс шин –HP высокоскоростная, рисунок протектора направленный ассиметричный. Хорошо себя ведет как на укатанном, так и на рыхлом снегу, на снежной каше и асфальте.

Мне нравитсяНе нравится

Отзыв от Ивана Т.

Плюсы и минусы

Очень тихая;
комфортная;
мягкая;
очень хорошо отводит воду;
отличное поведение на любом снегу;
при сильных морозах не дубеет;
отличное соотношение цена-качество;
предсказуемое поведение при маневрировании, трогании и торможении как на сухом, так и заснеженном покрытии;
подходит для субтропической зимы с мокрым снегом.

поведение на гладком льду;
нет фирменных мешков для хранения.

W до 270 км/ч: Nokian Tyres WR SUV 4

Нешипованная шина, разработанная специально для зимы. Модель демонстрирует прекрасное сцепление и хорошую управляемость на снегу, во время слякоти, сильного дождя.

Мне нравится1Не нравится

Отзыв от Константина М.

Плюсы и минусы

прочно сцепляется с мокрой, снежной и обледенелой поверхностью;
хорошо держит дорогу в любую погоду;
обладает технологией RunFlat;
не боится глубоких сугробов;
прочная;
не шумит.

стоит выше среднего.

По радиусу для внедорожников

Самая популярная модель с хорошими отзывами и высокой оценкой 4.7-5.0 по 5-бальной шкале фигурирует модель Bridgestone Blizzak DM.

Радиус Размер шины Индекс максимальной скорости* Рейтинг Цена (руб.)**
R16 215/65 102S 4.8  8 470
R17 275/65 115R 4.8  11 678
R18 255/60 112S 4.8  12 645
R19 255/55 109Q   4.8 15 020 
R20 235/50 103T   4.7 12 000 
R21 275/40 106T   4.8 20 310  
R22 265/45 104T   4.7 17 146 

Таблица 1.Лучшие шины по радиусу Bridgestone Blizzak DM ( **При нажатии на цену, можно посмотреть актуальную цену сейчас по вашему региону.)

Примечание:

*Индекс максимальной скорости бывает:

  • H – до 210 км/ч
  • J – до 100 км/ч
  • K – до 110 км/ч
  • L – до 120 км/ч
  • M – до 130 км/ч
  • N – до 140 км/ч
  • P – до 150 км/ч
  • Q – до 160 км/ч
  • R – до 170 км/ч
  • S – до 180 км/ч
  • T – до 190 км/ч
  • V – до 240 км/ч
  • W – до 270 км/ч
  • Y – до 300 км/ч
  • Z/ZR – свыше 240 км/ч

Bridgestone Blizzak DM

Автомобильная шина с направленным протекторным рисунком, гарантирует устойчивость и управляемость на скользком, обледеневшем дорожном покрытии, адекватно ведет себя на рыхлом снегу.

Мне нравитсяНе нравится

Отзыв от Владимира П.

Плюсы и минусы

мягкая;
хорошо держит дорогу в любую погоду;
крепко сцепляется со льдом и снегом;
не дубеет при морозе;
не издает сильный гул;
не чувствительная к колее.

нет.

Конденсаторы класса 1

Как вы могли заметить на диаграмме, C0G чрезвычайно устойчив (обратите внимание, что C0G и NP0 в маркировке имеют знак нуля, а не заглавную «O»). C0G использует диэлектрик класса 1 и является суперзвездой в мире конденсаторов: на емкость не оказывают существенного влияния ни температура, ни приложенное напряжение, ни старение

Однако у него есть один недостаток, который стал особенно актуальным в эту эпоху непреклонной миниатюризации: он неэффективен по размерам. Например, если вы будете искать конденсатор C0G на 0,1 мкФ, то самым маленьким будет размер 1206. И напротив, вы можете найти конденсатор X7R на 0,1 мкФ в корпусе 0306 и с номинальным напряжением (10 В), достаточно высоким для схем 3,3 В или даже 5 В.

Корпус 0306. В этом крошечном форм-факторе могут изготавливаться конденсаторы X7R.

Салон: разница вообще есть?

Но готовы ли вы к настоящему потрясению? X7 практически полностью копирует стилистику младшего собрата, добавив в стандарт только такой элемент, как третий ряд сидений. Учитывая, что оба внедорожника имеют одинаковую ширину, интерьеры в значительной степени идентичны по компоновке. По крайней мере, так обстоит дело спереди. Как говорится, найдите 7 отличий.

Второй ряд BMX X5 (G05)

То есть опасения определенного процента экспертов претворились в жизнь? Перед нами очередной шикарный «автобус»? Как-то грустно становится из-за этого понимания. Ощущение какой-то особенной брутальности или изысканного шика у BMW X7 просто-напросто отсутствует.

Единственное явное визуальное отличие – третий ряд сидений на X7

Единицы измерения

C= e*S/d

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10-6
  • 1 нанофарада – одна миллиардная часть фарады. 10-9
  • 1 пикофарада -10-12 фарады.
код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153  15000 пФ 15 нФ 0.015 мкФ
223  22000 пФ 22 нФ 0.022 мкФ
333  33000 пФ 33 нФ 0.033 мкФ
473  47000 пФ 47 нФ 0.047 мкФ
683  68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Будет интересно  Что такое полярность конденсатора и как ее определить?

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Сравнение комплектации

Безопасность

ABS + +
Подушка безопасности водителя + +
ESP + +
Подушка безопасности пассажира + +
Isofix / LATCH   +
Подушки безопасности оконные (шторки)   +

Комфорт

Усилитель руля + +
Бортовой компьютер + +
Кондиционер + +
Климат-контроль + +
Круиз-контроль — платная опция +  
Регулировка руля по высоте + +
Задний парктроник   +
Круиз-контроль   +
Передний парктроник   +
Система доступа без ключа — платная опция   +
Электропривод крышки багажника — платная опция   +
Активный усилитель руля   +
Датчик давления в шинах   +
Камера заднего вида — платная опция   +

Салон

Тканевый салон +  
Электростеклоподъемники передние + +
Электростеклоподъемники задние + +
Кожаный салон — платная опция +  
Электрорегулировка сидений — платная опция +  
Подогрев передних сидений — платная опция +  
Мультифункциональное рулевое колесо   +
Отделка кожей рулевого колеса   +
Складывающееся заднее сиденье   +
Электрорегулировка сидений   +
Кожаный салон   +
Спортивные передние сидения   +
Обогрев рулевого колеса — платная опция   +
Память передних сидений   +
Подогрев передних сидений   +
Вентиляция передних сидений — платная опция   +
Подогрев задних сидений — платная опция   +

Обзор

Противотуманные фары +  
Электропривод зеркал + +
Ксеноновые/Биксеноновые фары — платная опция +  
Датчик света   +
Обогрев зеркал   +
Датчик дождя   +
Омыватель фар   +

Мультимедиа

Штатная аудиоподготовка + +
Штатная аудиосистема с CD + +
Штатная навигационная система — платная опция   +
Штатная аудиосистема Hi-Fi   +

Механизм и строение

Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).

Строение керамического конденсатора.

Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.

Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90   доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.

Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.

Другими словами, временный переход от генерации спонтанной поляризации (спонтанная поляризация постепенно перестраивается к более устойчивому состоянию) к инверсии  затруднена появлением поляризации пространственного заряда. В этом состоянии более высокое электрическое поле необходимо, чтобы полностью изменить спонтанную поляризацию в доменах, которые в свою очередь могут быть полностью изменены низким уменьшением электрического поля и снижениями емкости. Это, как полагают и есть механизм старения.

Однако, микротекстура кристаллической решетки возвращается в исходное состояние при нагревании до температуры выше Точки Кюри, в которой старение решетки начинается снова и снова. Вообще емкость многослойного керамического конденсатора с высокой диэлектрической постоянной уменьшается приблизительно линейно в логарифмическом масштабе времени – в течение 24 часов после термической обработки выше 125 C. Пожалуйста, обратитесь к прикрепленным типовым данным старения нашей продукции и номинальной емкости конденсаторов. Емкость, которая уменьшилась в результате естественного старения, имеет свойство восстанавливаться при нагревании конденсаторов до Точки Кюри и выше.

Ожидаемая емкость многослойного керамического конденсатора будет в его номинале, когда эти условия установлены на оборудовании. Мы выбираем свою амплитуду емкости, основанную на предшествующем предположении. Кстати, температура, компенсирующая значения типовых конденсаторов, не проявляют явление старения.

Керамические конденсаторы стандартных параметров.

Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

По типу конструкции выпускают следующие керамические конденсаторы:

  • КТК – трубчатые;
  • КДК – дисковые;
  • SMD – поверхностные и другие.

Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

Цветовой декодер резисторов

Для регулирования тока в электрических цепях применяют резисторы, который являются одним из наиболее распространенных радиоэлементов. Основной параметр резистора это сопротивление току, измеряемая в Ом, КилоОм (1000 Ом) и даже МегаОм(1000кОм).

Для маркировки резистора используют буквенно-цифровой код или цветовой код, нанесенный на внешний корпус резистора.

Буквенно-цифровое обозначение резистора

Данное обозначение сейчас встречается довольно редко по сравнению с цветовой маркировкой, но все же оно еще долго не выйдет из обихода в радиоаппаратуре, электронных модулях и платах. В данной маркировки применяются три буквы R(ом), K(килоом), M(мегаом).

Есть три варианта буквенно-цифровой маркировки:

  1. Буква в конце цифр — применяться при целочисленном значение сопротивления(10R=10ом или 68K=68кОм)
  2. Буква в начале цифр — применяться при значение сопротивления меньше единицы (R15=0,15 Ом, M36=0,36Мом)
  3. Буква между цифрами — применяется при дробном значение сопротивление, если оно больше единицы (1K5=1,5кОм или 6M8=6,8МОм)

Допуск резистора

Не нужно думать, что резисторы имеют точно такое же значение как указано в маркировки, у каждого резистора есть такой параметр как отклонение от номинала, измеряемое в процентом соотношение от номинального значения(см. Маркировку) т. е. Если допуск составляет 10% а номинальное сопротивление резистора 10 Ом, то показания на мультиметре в 11 или 9 Ом не являются браком и понятное дело, что чем точнее резистор, тем выше его цена.

Цветовая маркировка

При монтаже очень сложно учитывать расположение маркировки каждого радиокомпонента, поэтому буквенно-цифровая маркировка не удобна в дальнейшей эксплуатации и ремонте в отличие от цветовой маркировки, которая видна с любой стороны элемента, но вслед за этим и есть минус, для определения номинального значения нужен онлайн сайт или скачать программу для определения цветовой маркировки резисторов.

Каждому цвету соответствует число

  • В четерехполосной маркировке двузначное число(номинал)
  • В пятиполосной маркировки трехзначное число(номинал)

Номинал умножается на третью полоску(для четырехполосного резистора) или на 4-ю полоску для пятиполосного резистора

Последняя полоска это допуск резистора

Мощность резистора

Все понимают что большой ток может течь только по большим проводам и резисторы в этом плате не исключение, среди их можно найти мощность 0,25 Ватт 0,5 Ватт 1, 2 и т. д. отличаются они по размерам, а на старых резисторах из СССР обозначались МЛТ1 или МЛТ2 что означало 1 и 2 вата соответственно.

Начало маркировки

Любой резистор имеет смещение к одному из выводом цветовой маркировкой, первым кольцом считается ближний к выводу, если размеры не позволяют сделать смещение, то первое кольцо делают в два раза шире остальных, тем самым давая понять где начало отсчета

Физические размеры конденсатора

Для большинства применений в электронике минимальный размер является целью для разработки компонентов. Чем меньшие по размеру компоненты можно изготовить, тем большая схема может быть встроена в меньший корпус, при этом, как правило, также уменьшается вес. В случае конденсаторов существуют два основных ограничивающих фактора для минимального размера устройства: рабочее напряжение и емкость. И эти два фактора, как правило, противоречат друг другу. Для любого конкретного выбранного диэлектрического материала единственный способ увеличить номинальное напряжение конденсатора – это увеличить толщину диэлектрика. Однако, как мы видели, это приводит к уменьшению емкости. Емкость можно восстановить, увеличив площадь пластины, но это делает компонент больше. Вот почему вы не можете судить о емкости конденсатора в фарадах просто по размеру. Конденсатор любого заданного размера может быть относительно высоким по емкости и с низким рабочим напряжением, или наоборот, или иметь некоторый компромисс между двумя этими крайностями. Посмотрим для примера следующие две фотографии:

Рисунок 3 – Масляный конденсатор высокого напряжения

Это довольно большой конденсатор по физическим размерам, но он имеет довольно низкое значение емкости: всего 2 мкФ. Тем не менее, его рабочее напряжение довольно высокое: 2000 вольт! Если бы этот конденсатор был перепроектирован так, чтобы между его пластинами был более тонкий слой диэлектрика, то могло бы быть достигнуто, по крайней мере, стократное увеличение емкости, но за счет значительного снижения его рабочего напряжения. Сравните приведенную выше фотографию с приведенной ниже. Конденсатор, показанный на нижнем рисунке, представляет собой электролитический компонент, по размерам подобный приведенному выше, но с очень отличающимися значениями емкости и рабочего напряжения:

Рисунок 4 – Электролитический конденсатор

Более тонкий слой диэлектрика дает ему гораздо большую емкость (20000 мкФ) и резко снижает рабочее напряжение (постоянное напряжение 35 В, напряжение 45 В в пике).

Вот некоторые образцы конденсаторов разных типов, все по размеру меньше, чем показанные ранее:

Рисунок 5 – Керамические конденсаторыРисунок 6 – Пленочные конденсаторыРисунок 7 – Электролитические конденсаторыРисунок 8 – Танталовые конденсаторы

Электролитические и танталовые конденсаторы являются полярными (чувствительны к полярности) и всегда помечаются как таковые. У электролитических конденсаторов отрицательные (-) выводы отмечаются стрелками на корпусе. У некоторых полярных конденсаторов полярность обозначена на положительном выводе. У большого электролитического конденсатора на 20 000 мкФ, показанного выше, положительный (+) вывод помечен знаком «плюс». Керамические, майларовые, пленочные и воздушные конденсаторы не имеют маркировки полярности, потому что эти типы являются неполярными (они не чувствительны к полярности).

Конденсаторы являются очень распространенными компонентами в электронных схемах. Внимательно посмотрите на следующую фотографию – каждый компонент, обозначенный на печатной плате буквой «С», является конденсатором:

Рисунок 9 – Конденсаторы на сетевой карте

Некоторые конденсаторы на плате – это стандартные электролитические конденсаторы: C30 (верхняя часть платы, в центре) и C36 (левая сторона, 1/3 от вершины). Некоторые другие представляют собой особый вид электролитических конденсаторов, называемый танталовым, потому что именно этот тип металла используется для изготовления пластин. Танталовые конденсаторы имеют относительно высокую емкость для своих физических размеров. На плате, показанной выше, танталовые конденсаторы: C14 (чуть ниже слева от C30), C19 (непосредственно под R10, который ниже C30), C24 (нижний левый угол платы) и C22 (внизу справа).

Примеры еще меньших по размеру конденсаторов можно увидеть на этой фотографии:

Рисунок 10 – Конденсаторы на жестком диске

Конденсаторы на этой печатной плате из соображений экономии места являются «устройствами поверхностного монтажа», как и все резисторы. В соответствии с соглашением о маркировке компонентов конденсаторы могут быть идентифицированы по меткам, начинающимся с буквы «C».

Конденсаторы 1-го класса:

Ключевые особенности конденсаторов это типа:

  • Высокая точность — точность 1% и лучше (бывают допустимые погрешности ёмкости в ±0.1 пФ!);
  • Отсутствие деградации со временем — практически отсутствует благодаря применённым материалам при изготовлении конденсаторов этого класса;
  • Отсутствие токов утечки — так же благодаря хорошим материалам они практически отсутствуют (крайне малы, особенно в сравнении с классом 2);
  • Нет зависимости ёмкости от приложенного напряжения — этот эффект здесь не проявляется, особенно в сравнении с конденсаторами класса 2, из которого некоторые конденсаторы могут терять до половины ёмкости с увеличением напряжения до максимально допустимого для них;
  • Линейный температурный коэффициент — ёмкость этих конденсаторов линейна с изменениями температуры.

Благодаря совокупности или даже некоторым по отдельности особенностям керамических конденсаторов этого класса их применяют в резонансных схемах, осцилляторах, PLL, фильтрах с высокой добротностью и даже для фильтрации ВЧ помех по критическим шинам питания.

Тип диэлектрика конденсаторов этого класса обозначается тремя символами в следующем порядке (пример обозначения):

Расшифровать ТКЕ можно по следующей таблице:

Более подробное описание можно найти в стандарте EIA-RS-198.

Размеры керамических конденсаторов типоразмера 0603

Технические характеристики и маркировка керамических чип конденсаторов 0603 производитель Walsin

Технические характеристики и маркировка керамических чип конденсаторов 0603 производитель Yageo

Технические характеристики и маркировка керамических чип конденсаторов AVX/KYOCERA

Технические характеристики и маркировка керамических чип конденсаторов EPCOS (NPO диэлектрик)

Технические характеристики и маркировка керамических чип конденсаторов KEMET

Технические характеристики и маркировка керамических чип конденсаторов KOA

Технические характеристики и маркировка керамических чип конденсаторов MURATA

Технические характеристики и маркировка керамических чип конденсаторов Panasonic

Технические характеристики и маркировка керамических чип конденсаторов SAMSUNG

Технические характеристики и маркировка керамических чип конденсаторов TDK

Технические характеристики и маркировка керамических чип конденсаторов TAIYO YUDEN

Керамические чип конденсаторы типоразмера 0603 наиболее популярный типоразмер пригодный как для автоматического монтажа, так и для ручной пайки. Ограничение по большим номиналам емкости можно обойти применив керамические чип конденсаторы типоразмеров , 1206 и 1210, Керамические чип конденсаторы типоразмера 0603 несколько проигрывают в цене керамическим конденсаторам , однако это может быть компенсировано меньшей нормой упаковки 4 000 шт против 10 000 шт и более широкой доступностью. Для электрических схем работающих при напряжение 100 В и выше широко используются высоковольтные конденсаторы типоразмеров 0805 и больше. Керамические конденсаторы большой емкости от 1 мкф до 100 мкф вытесняют полярные танталовые чип конденсаторы ввиду более низкой стоимости и способностью работать на больших частотах. В цепях требующих настройки емкости широко используются подстроечные конденсаторы Murata, в цепях питания радиочастотных схем используются многослойные керамические проходные конденсаторы.

Производитель — AVX/KYOCERA, EPCOS, KEMET, KOA, MURATA, PANASONIC, SAMSUNG, TDK, TAIYO YUDEN, VISHAY, YAGEO.

Дизайн

1.имеет поворачивающийся экран
Canon EOS R

Canon EOS R6

Наличие поворачивающегося экрана полезно для съемки сложных кадров.

2.Всепогодный (брызгозащищенный)
Canon EOS R

Canon EOS R6

Устройство защищено дополнительной изоляцией для предотвращения повреждений от пыли, дождя и водяных брызг.

3.имеет встроенный моторизированный фокус
Canon EOS R

Canon EOS R6

Фокусный мотор перемещает линзу, для того чтобы автоматически сфокусироваться. Системные камеры, оснащенные фокусным мотором позволяют вам использовать широкий спектр различных объективов, в том числе объективы, которые не имеют собственного фокусного мотора. В компактных камерах фокусный мотор обычно встроен.

4.пыле- и водонепроницаемый
Canon EOS R

Canon EOS R6

Устройство является пыленепроницаемым и водостойким. Водостойкие устройства защищены от проникновения воды, например от мощных водяных струй, но не при погружении в воду.

5.вес

660g

680g

Мы считаем, что меньший вес лучше, потому что более легкие устройства удобнее переносить. Меньший вес также является преимуществом для бытовой техники, поскольку транспортировка становится удобнее, а также для многих других видов продукции.

6.зона охвата видоискателя

100%

100%

При 100% охвате вы можете правильно составить образ при съемке. С неполным охватом вам придется обрезать фотографии впоследствии, чтобы добиться их совершенства.

7.имеет оптический видоискатель
Canon EOS R

Canon EOS R6

Оптический видоискатель (или ОВИ) позволяет фотографу скомпоновать кадр и увидеть именно то, что видит объектив. Для ОВИ не характерно отставание изображения, и они не требуют энергии — в отличие от электронного видоискателя, который может разрядить батарею. Они также лучше справляются в условиях плохой освещенности.

8.Имеет башмак
Canon EOS R

Canon EOS R6

Башмак может использоваться для подключения внешней вспышки, а также экспонометров, видоискателей, дальномеров и других принадлежностей.

9.разрешение экрана

2100k dots

1620k dots

Более высокое разрешение экрана обеспечивает более четкое изображение, что помогает легче рассмотреть ваши фотографии.

Обозначения

Стандарт 198 Американского союза электроники (EIA, Electronic Industries Alliance) определяет температурный коэффициент емкости (ТКЕ, он же TCC, temperature coefficient of capacitance) керамических конденсаторов. При использовании этих определений вы увидите такие обозначения диэлектриков MLCC конденсаторов, как Y5V, X7R и C0G. Каждая буква здесь имеет значение. Вы можете использовать таблицы ниже для расшифровки этих обозначений.

ppm – милионная доля, 10-6.

Расшифровка маркировки многослойных керамических конденсаторов (MLCC) с диэлектриками класса 1
Буква Значащее число температурного коэффициента, ppm/°C Цифра Множитель значащего числа Буква Допустимое отклонение температурного коэффициента, ±ppm/°C
C –1 G 30
B 0,3 1 –10 H 60
L 0,8 2 –100 J 120
A 0,9 3 –1000 K 250
M 1,0 4 –10000 L 500
P 1,5 5 +1 M 1000
R 2,2 6 +10 N 2500
S 3,3 7 +100    
T 4,7 8 +1000    
U 7,5 9 +10000    
Расшифровка маркировки многослойных керамических конденсаторов (MLCC) с диэлектриками классов 2 и 3
Буква Минимальная температура (°C) Цифра Максимальная температура (°C) Буква Максимальное изменение емкости в температурном диапазоне (%)  
Z +10 2 +45 A ±1,0 Класс 2
Y –30 4 +65 B ±1,5
X –55 5 +85 C ±2,2
    6 +105 D ±3,3
    7 +125 E ±4,7
    8 +150 F ±7,5
    9 +200 P ±10
        R ±15
        S ±22
        *L от +15 до –40
        T от +22 до –33 Класс 3
        U от +22 до –56
        V от +22 до –82

Класс I

Иногда называемые как NP0, C0G считаются ультрастабильными. Используя таблицу для расшифровки «имени», мы можем увидеть, то ТКЕ для C0G составляет ±30 ppm/°C (±30 миллионных долей на градус Цельсия) в номинальном температурном диапазоне. Другими словами, емкость C0G будет меняться незначительно из-за изменений температуры.

Промышленные конденсаторы C0G от KEMET изготавливаются с использованием уникального состава цирконата кальция. Этот материал является параэлектрическим, что обеспечивает его стабильность при прикладывании постоянного напряжения.

Поскольку классификация не определяет используемый материал, другие производители могут использовать различные составы или разные наборы материалов.

Классы II и III

Диэлектрики классов II и III используют немного отличающуюся от класса I систему именования.

  1. Первая буква представляет собой самую низкую температуру.
  2. Вторая цифра представляет собой максимальную температуру.
  3. Третья буква указывает максимальное изменение емкости, которое будет происходить между минимальной и максимальной температурами в заданном диапазоне.

Например, давайте рассмотрим X7R в таблице классов II/III. X означает –55°C, 7 означает +125°C, а R означает изменение емкости ±15% в пределах указанного температурного диапазона.

Разница между классами II и III заключается в том, насколько емкость будет изменяться при определенной температуре. Как правило, в качестве диэлектрика классов II и III используется титанат бария. Данный материал является сегнетоэлектриком, который является источником нестабильности емкости.

Зависимость относительной диэлектрической проницаемости диэлектрика от температуры

По мере увеличения класса некоторые из отрицательных характеристик диэлектрика усиливаются.

Шумные конденсаторы

Если вы разрабатываете аудиоустройства или просто предпочитаете тихие печатные платы, то у вас есть еще одна причина выбора C0G по сравнению с X7R или X5R: конденсаторы класса 2 демонстрируют пьезоэлектрическое поведение, которое может заставить их функционировать и как микрофон (который преобразует звук в электрический шум), и как зуммер (который преобразует сигналы переменного тока в звуковой шум). У конденсаторов класса 1 такой проблемы нет.

«Поющий кондесатор»

Я уверен, что вы можете найти гораздо больше информации о типах конденсаторов и диэлектриков от таких производителей как Kemet, AVX и TDK. Если хотите увидеть полную таблицу трехсимвольных кодов, то смотрите следующую статью.

Кодовая маркировка, дополнение

   В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

   Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Код Емкость Емкость Емкость
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

   * Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

   Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Код Емкость Емкость Емкость
1622 16200 16,2 0,0162
4753 475000 475 0,475

Рис. 6

С. Маркировка емкости в микрофарадах

   Вместо десятичной точки может ставиться буква R.

Код Емкость
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

   В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33H2 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

   Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

   Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код Емкость Напряжение
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

В. Маркировка 4 символами

   Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

   Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.