Как выбрать без помощи специалистов трансформатор тока

Содержание

Трансформаторы тока для электросчетчиков – характеристики и варианты подключения

При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.

Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.

Номинальное напряжение трансформатора тока

Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:

  • 0,66 кВт;
  • 6.0 кВт;
  • 10 кВт;
  • 15 кВт;
  • 20 кВт;
  • 24 кВт;
  • 27 кВт;
  • 35 кВт;
  • 110 кВт;
  • 150 кВт;
  • 220 кВт;
  • 330 кВт;
  • 500 кВт;
  • 750 кВт;
  • 1150 кВт.

Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.

Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения.

При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.

Действующие параметры номинального или линейного напряжения, в условиях которых сохраняется работоспособность измерительного токового трансформатора, обязательно указываются в сопроводительной документации и отражены в таблице для прибора.

Класс точности

При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.

Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.

Принцип работы трансформатора тока

В приборах промышленного назначения используется несколько классов точности:

В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.

Обратите внимание

Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2.

Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов.

Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.

Измерительно-информационная система, представленная устройствами, выполняющими приём, обработку и передачу данных, а также приборами учёта, способна формировать корректные показатели только при высокой точности токовых трансформаторов.

Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.

Номинальный ток вторичной обмотки

Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.

Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.

Разновидности трансформаторов тока

Выбирать прибор, подходящий под напряжение сети или конкретные работы, необходимо на основании классификации по разным признакам.

Назначение

Существуют такие трансформаторы:

  • измерительные – замеряют параметры цепи,
  • защитные – предотвращают перегрузки, выход оборудования из строя,
  • промежуточные – подключаются в цепь с релейной защитой, выравнивают токи в схемах дифзащиты,
  • лабораторные – отличаются высокой точностью.

Тип монтажа

Для частного дома и квартиры можно подобрать аппарат, монтируемый внутри или снаружи помещения. Некоторые модификации встраиваются в оборудование, а также надеваются на проходную изоляцию. Для измерения и лабораторных тестов используются переносные модели.

Конструкция первичной обмотки

Существуют шинные, одновитковые (со стержнем) и многовитковые (с катушкой, обмоткой петлевого типа и «восьмеркой») устройства.

Тип изоляции

Бывают следующие преобразователи:

  • сухая изоляция – на основе литой эпоксидки, фарфора или бакелита,
  • бумажно-масляная – стандартная или конденсаторная,
  • газонаполненные – внутри находится неорганический элегаз с высоким пробивным напряжением,
  • компаундные – внутри находится заливка из термоактивной и термопластичной смолой.

В зависимости от количества ступеней трансформации можно подобрать одноступенчатые и каскадные модели. Вся линейка имеет рабочее напряжение более 1000 В.

Виды трехфазных приборов учета

Трехфазные электросчетчики могут различаться как по способу подключения к сети, так и по тарификации. Сначала имеет смысл разобраться с включением прибора учета — оно может быть как прямым, так и косвенным, причем как одно, так и другое может производиться по трех- или четырехпроводной системе, т.е. с использованием нулевой жилы.

Трехфазный электросчетчик косвенного или трансформаторного подключения прямого контакта с токопроводящими жилами не имеет. На шины крепятся трансформаторы тока, которые и «передают» информацию на прибор учета. Подобная схема включения используется в сетях с более высокой нагрузкой и силой тока.

https://youtube.com/watch?v=Ck0OnWoUq8U

Счетчики прямого включения подразумевают непосредственное прохождение тока к потребителю через устройство — это более распространенный вариант подсоединения, используемый в частном доме и некоторых квартирах. При подобной схеме монтажа сила тока не должна превышать 100 А.

Что касается тарификации, то, наверное, ни для кого не секрет, что электроэнергия в ночное время стоит дешевле. А потому многие из тех, кто пользуется ей, в основном, по ночам, устанавливают двухтарифные трехфазные счетчики. Подобные приборы имеют возможность автоматического переключения и считают отдельно потраченную электроэнергию в промежутках с 7 до 23 часов и с 23 до 7. Естественно, выходит немалая экономия на оплате подобной коммунальной услуги.

Подключаются двухтарифные трехфазные счетчики электроэнергии точно так же, как и обычный — никаких принципиальных различий в монтаже нет.

Основное различие между приборами учета электроэнергии состоит в том, к какому виду он относится — аналоговый (его так же называют индукционным) или электронный.

Схема подключения через трансформаторы

Аналоговые индукционные счетчики

Принцип действия этих приборов учета аналогичен аналоговому однофазному счетчику. Электроэнергия, протекая через токовую катушку, создает электромагнитное поле вихревого тока, которое воздействует на алюминиевый диск, заставляя вращаться. Вращение, посредством червячной передачи, проходит на механический счетчик, который и фиксирует расход.

Естественно, чем выше нагрузка на токовую катушку, тем быстрее будет происходить отсчет кВт/ч. В настоящее время повсеместно идет замена аналоговых приборов учета на электронные трехфазные счетчики электроэнергии как обладающие большей точностью и меньшей погрешностью в расчетах. Также причиной подобного замещения стало и то, что индукционные счетчики невозможно использовать в качестве двухтарифных, равно как и при автоматическом снятии с них показаний.

Электронные приборы

Схема подключения трехфазного счетчика подобного вида обусловлена работой аналого-цифрового преобразователя (АЦП), который выдает импульсы на микросхему в соответствии с частотным графиком. Ниже, на схематическом изображении показан принцип работы такого электросчетчика.

Сама же микросхема запоминает все данные, при этом имеет возможность вывода на дисплей как моментальных показателей, так и полученных за определенное время, в зависимости от сложности и стоимости прибора учета.

Принцип работы электронного прибора учета

Конечно, у электронных счетчиков, помимо несомненных преимуществ, таких как высокий класс точности, возможности двухтарифного или автоматического учета и широкого диапазона рабочих температур, есть и свои недостатки. К ним можно отнести отсутствие защиты от помех. Также подобные счетчики не ремонтируются и очень «не любят» скачков напряжения.

Но все же повсеместный переход на электронные приборы учета взамен аналоговых показал их преимущество перед индукционными устройствами.

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:

  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.

Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Опорные трансформаторы тока TОП-0,66

ОАО «СЗТТ»

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Оборудование учётного узла

Вводной автоматический выключатель

Для учётного шкафа узла свыше 100 А определен минимальный комплект оборудования.

Вводной автоматический выключатель, через который силовая линия заходит во внутреннюю сеть. От его нижней части до трансформаторов доступ для неквалифицированного персонала закрыт по нормам. Простой вариант защиты представлен оргстеклом, зафиксированным опломбированными шпильками.

Трансформаторы тока. Коэффициент трансформации зависит от мощности, которая выделена пользователю сети. Расчёт производят сотрудники Энергосбыта и предоставляют ТУ (технические условия).

Однофазный счётчик не предполагает использование преобразователей. В трёхфазных сетях распределение нагрузки может быть неравномерно, поэтому учёт ведётся по каждой фазе отдельно. Выбирать все 3 ТТ необходимо от одного производителя, с одинаковым набором свойств.

Испытательная коробка переходная

Колодка клеммная измерительная ККИ (испытательная панель) состоит из 2 секторов. Токовый имеет 7 пар клемм. 1 — заземление. К 6 остальным подходят провода от вторичных обмоток ТТ. Между ними можно установить попарные перемычки для замыкания сети перед отключением учётного устройства. В сектор напряжения заходят кабеля фаз A, B, C и нулевой проводник N. Ползунковые перемычки позволяют размыкать цепь при помощи отвёртки.

Счётчики могут быть электромеханические (дисковые), электронные (с ЖК дисплеем, дистанционным управлением), комбинированные. Энергосбыт предписывает требования к прибору в ТУ индивидуально. Схема подключения каждой модели находится на крышке или в прилагаемом паспорте.

Счетчики электроэнергии

Универсальный счётчик имеет 10 клемм, сгруппированных по 3 на каждую фазу, последняя — ноль. Первая, третья клемма — выход с вторичной обмотки трансформатора И1, И2; вторая — фазный провод.

Производители выпускают похожие счётчики прямого и нет подключения. При подборе нужно внимательно изучить маркировку. На фазном счётчике вместо максимально допустимого значения тока указан коэффициент трансформации (например: 5(7,5), 3X150/5 А)

Провода используют жёсткие, сечение 2,5+ мм2, формируя кольца для подключения. Возможны мягкие с изолированными наконечниками. В счётчике жила зажимается двумя винтами.

Патрон с электролампой через клавишный выключатель от конденсата в щитах наружной установки.

Бокс с окошками под табло учётного прибора и рычаги автоматов.

Комплектация дополняется защитной автоматикой в соответствии с проектом электросети.

https://youtube.com/watch?v=fgoXNPWIlDM

Как подключить электросчетчик через трансформаторы тока?

Схем такого подключения существует несколько. Разберем все эти схемы применительно к трехфазному варианту включения. Для чего нужны электросчетчики? Вообще счетчики нужны для того, чтобы учитывать электрическую энергию, потребленную в трех- и четырехпроводных сетях с частотой тока, равной 50 герц.Счетчики трехфазного типа бывают следующих видов:

  • 3*57.7/100 В;
  • 3*230/400 В.

К источнику электроэнергии такие счетчики необходимо подключать с использованием измерительных трансформаторов тока, рассчитанных на вторичный ток 5 А и трансформаторов напряжения со вторичным напряжением 100 В.

Рассматриваемые тут схемы применимы к любым типам счетчиков (и к аппаратам индукционного типа, и к электронным).

Первое, что необходимо помнить, выполняя подключение, это то, что при подключении необходимо соблюдение полярности подключения обмоток (Л1, Л2 – первичная; И1, И2 – вторичная) у трансформаторов тока. Полярность обмоток трансформаторов напряжения, так же, подлежит обязательной перепроверке. Сами трансформаторы, тоже нужно выбирать правильно.

О принципах подключения с использованием трансформаторов тока

Начнем рассматривать схемы подключения со счетчиков, имеющих полукосвенное включение. Таких схем существует несколько.

Десятипроводная

В этой схеме разделены цепи питания по току и напряжению, что придает немалый плюс из соображения электрической безопасности.

https://youtube.com/watch?v=HA518GQmHBs

Отрицательная сторона этой схемы – проводов для подключения надо много.

Теперь разберем назначение имеющихся зажимов:

  1. Зажим входного провода для фазы А;
  2. Зажим входного провода измерительной обмотки фазы А;
  3. Зажим выходного провода для фазы А;
  4. Зажим входного провода фазы В;
  5. Зажим входного провода измерительной обмотки фазы В;
  6. Зажим выходного провода для фазы В;
  7. Зажим входного провода для фазы С;
  8. Зажим входного провода измерительной обмотки фазы С;
  9. Зажим выходного провода для фазы С;
  10. Зажим входного нулевого провода;
  11. Зажим нулевого провода.

Контакты трансформаторов тока:

  • Л1 – контакт входа фазной (силовой) линии;
  • Л2 – контакт выхода фазной линии (нагрузки);
  • И1 – контакт входа обмотки измерения;
  • И2 – контакт выхода обмотки измерения.

Вот описание схемы такого подключения.

Токовые трансформаторы подключать нужно в разрыв фазных проводов клеммами Л1 и Л2.

Фаза А подключается к клемме Л1 трансформатора тока ТТ1, туда же подключается клемма 2 счетчика. Клемма 1 подключается к контакту И1 ТТ1.

Контакты И2 трансформаторов тока ТТ1 и ТТ2 нужно соединить вместе, в эту же точку подключают контакты 6 и 10 счетчика, после чего все это требуется соединить с нейтралью.

Контакты Л2 всех ТТ подключаются к нагрузке. Теперь рассмотрим подключение остальных контактов:

  • Контакт 3 счетчика подключаем на И2 ТТ1;
  • Контакт 4 счетчика – И1 ТТ2;
  • Контакт 5 счетчика – вход фазы В и клемма Л1 ТТ2;
  • Контакт 7 счетчика – клемма И1 ТТ3;
  • Контакт 8 счетчика – вход фазы С и клемма Л1 ТТ3;
  • Контакт 9 счетчика – клемма И2 ТТ3.

Подключение токовых трансформаторов по схеме «звезда»

В такой схеме нужно меньшее число проводов, чтобы выполнить подключение. В этой схеме клеммы И2 всех токовых трансформаторов, соединяясь вместе, подключаются к клемме 11 счетчика. Контакты 3, 6, 9 и 10, соединившись вместе, подключаем на нулевой провод. Остальные клеммы подключаем так же, как и в предыдущем варианте.

Схема подключения с применением испытательной клеммной коробки

Существует специальное требование для выполнения подключения электросчетчиков через трансформаторы (ПУЭ, гл1.5, п1.5.23), говорящее о том, что это подключение необходимо выполнять с применением испытательного блока (коробки).

Присутствие такой коробки (блока) дает возможность производить замыкание вторичных обмоток токовых трансформаторов, подключить эталонный (образцовый) счетчик без отключения нагрузки и выполнять смену счетчиков, производя отключение всех цепей в испытательной коробке.

Без внимания оставим только одну схему – семипроводную (иначе называемую схемой, имеющей совмещенные цепи напряжения и тока). Не рассматриваем ее по той причине, что такая схема устарела.

Существенным ее минусом считается то, что у нее имеется связь гальванического типа между входными и выходными цепями, а это является источником немалой опасности для тех, кто будет обслуживать электросчетчики.

Вот мы и рассмотрели все существующие схемы подключения электросчетчиков с применением трансформаторов тока. Какой из них использовать, индивидуальное дело каждого. Единственное, что необходимо учитывать при этом, так это индивидуальные особенности места необходимой установки прибора и не забывать про требования специальных правил ПУЭ.

Выбор числа трансформаторов

Однотрансформаторные подстанции используются в двух случаях. Во-первых, для объектов III категории электроснабжения. Во-вторых, для потребителей, имеющих возможность резервирования электроснабжения с помощью АВР (автоматического включения резерва) с другого источника питания.

При питании потребителей I и II категории в аварийном режиме на двухтрансформаторной подстанции после срабатывания АВР целый трансформатор принимает на себя нагрузку неисправного. Поэтому его перегрузочной способности должно хватить на время замены вышедшего из строя трансформатора. В нормальном режиме трансформаторы работают недогруженными, что экономически нецелесообразно. Поэтому при аварийной ситуации некоторые потребители III категории электроснабжения отключают от сети.

Перерыв питания объектов II категории ограничен временем в одни сутки. Для восстановления схемы необходим стратегический складской резерв оборудования необходимого для ликвидации аварии. При этом мощность нового трансформатора должна быть идентична заменяемому. Таким образом, сокращается количество резервного оборудования.

Подключение через трансформаторы: схемы

Преобразователи тока применяются в низковольтных установках с нагрузкой более 100А и мощностью до 0,4КВ. В сеть монтируются только трансформаторы. Силовые участки подключаются через ТТ. Линии напряжения присоединяются непосредственно к приборам учета. Метод получил название «полукосвенный».

В высоковольтных линиях электропередачи с нагрузкой свыше 1000В получил распространение косвенный способ. Совместно с ТТ трудятся трансформаторы напряжения (ТН).

Варианты полукосвенного метода – десятипроводная, семипроводная,совмещенная схемы монтажа. В каждой из технологий есть плюсы и минусы.

В десятипроводной схеме подключения линии тока и напряжения изолированы друг от друга. Раздельный учет тока, напряжения – достоинство метода. При проверках и обслуживании не приходится отключать электроэнергию. Токовые участки заземляются. При нарушениях работы в одной фазе не прекращаются измерения по другим фазам.

Недостаток – большое количество соединительных кроссов:

  • перемычки от каждой из фаз – 3 шт.;
  • нулевой проводник – 1 шт.;
  • линии от преобразователя – 6 шт.

В семипроводном варианте 3 измерительные линии объединяются с нейтралью. Для прокладки понадобятся семь перемычек. Плюсы – легкость монтажа, меньший расход кабельной продукции. Отсутствие учета энергии при сбоях в работе каждой из фаз– минус.

Изредка встречается устаревший способ – с совмещенными линиями. Отключение потребителей при плановых проверках, ошибки в показаниях сделали его использование нецелесообразным.

В схему включения счетчика через трансформаторы тока входят:

  • вводный автомат;
  • ТТ;
  • 3-фазный счетчик;
  • амперметр;
  • вольтметр;
  • клеммный блок (КИП);
  • комплект кабелей;
  • клеммы.

Обязательное наличие испытательных коробок в схемах с ТТ прописано в п. 5. 1. 23 Правил устройства электроустановок (ПУЭ). Задача клеммного устройства – не допустить обесточивания потребителей при:

  • выключении сети в каждой фазе;
  • замене неисправного оборудования;
  • шунтировании;
  • установке образцового прибора учета;
  • тестовых замерах.

Марки счетчиков различаются по конструкции, классу точности, способу монтажа. Универсальный вариант – электронный счетчик Меркурий 230 ART. Прибор включается как непосредственно, так и косвенно. Полезные качества – многотарифный режим, защита от взлома, встроенная память, модем передачи данных. Показатели расхода увеличиваются при нарушении очередности фаз. Срок эксплуатации – 30 лет.

Принципиальная схема подключения трехфазного счетчика через трансформаторы тока.

Контролируемая линия выводится на клеммы Л1, Л2. Контролирующая – на И1, И2. Перемычка К предусмотрена для защиты обмотки от перепадов напряжения. Уровень нагрузки I1 преобразуется до значения I2. N – нейтраль, A – амперметр, W – вольтметр.

Важные нюансы

Схема коммутации указывается в паспорте и на корпусе изделия.Чтобы не возникли сбои в электросети, элементы подбираются с идентичными свойствами:

  1. Приборы прямого включения не применяются в косвенной схеме.
  2. Для преобразователей с вторичным током 5А подходят 5-Амперные аппараты.
  3. В схеме участвуют ТТ с одинаковым К преобразования. Коэффициент рассчитывается в соответствии с параметрами сети.
  4. Трехфазное оборудование опасно для однофазной сети.
  5. Лучше взаимодействуют марки одного производителя.

В главе 1.5 Правил прописаны нормативные требования для правильного выбора преобразователей. Максимальный, в том числе аварийный, показатель нагрузки в контролируемой установке не должен превышать номинальные характеристики трансформатора.

На точность учета влияет направление потока в обмотках трансформаторов.Соблюдать полярность помогает маркировка клемм. В силовой сети приняты обозначения Л1, Л2; в измерительной– И1, И2. Соединение выполняется в строгой последовательности. Исключает путаницу цветная изоляция. Стандартные цвета указываются в ПУЭ. Правильность подключения проверяется гальванометром.

Как опытный дирижер, трансформатор регулирует работу энергосистемы.Подключение через ТТ снижает стоимость строительства. Не понадобится крупногабаритное оборудование. Компактный 5-Амперный приборчик измеряет нагрузку в сотни Ампер! Взаимодействовать с полезным аппаратом могут реле, амперметры, ваттметры. Благодаря трансформаторам соблюдается главное требование – безопасность учета электроэнергии.