Урок 1§1.1. магистрально-модульный принцип построения компьютераинструктаж по техники безопасности

Содержание

Принцип действия

Назначение микропроцессора заключается в считывании каждой команды из памяти, ее декодировании и выполнении.

ЦПУ обрабатывает данные согласно инструкциям программы в форме логических и арифметических операций. Информация извлекается из памяти или поступает из устройства ввода, и результат обработки сохраняется в памяти или доставляется на соответствующее устройство вывода так, как это указано в командах. Вот что такое микропроцессоры. Для выполнения всех указанных функций у них имеются различные функциональные блоки.

Такая внутренняя или организационная структура ЦПУ, определяющая его работу, называется его архитектурой.

Типичная схема устройства микропроцессора представлена ниже.

Почему кремний?

Все чипы, которые производятся для массового рынка, делаются на кремниевой основе. Если не углубляться совсем в какие-то страшные и непонятные цифры с формулами, то причина кроется в атомной структуре кремния, которая идеально подходит для того, чтобы делать микросхемы и процессоры практически любой конфигурации.

Получают кремний, к слову, из песка. Да, самого обычного, который у вас есть на ближайшем берегу. Но вот в чём подвох — его чистота, если говорить в цифрах, составляет 99,5% (0,5% в таком кремнии составляют разные примеси). Может показаться, что это уже суперблизко к идеальной чистоте, но нет, для процессора необходимо, чтобы кремний имел чистоту 99,9999999%. Для этого материал проводят через цепочку определённых химических реакций. После этого кремний плавят и наращивают в один большой кристалл. Весит он под сотню килограмм и выглядит следующим образом:

После этот кристалл нарезается на пластины с диаметром около 30-сантиметров, которые тщательно шлифуются, чтобы не было никаких зазубрин. Дополнительно применяется ещё химическая шлифовка. Если хотя бы на одной пластине будут шероховатости — её забракуют. А вот готовые пластины кремния отправляют на дальнейшее производство.

Декодирование

Дешифратор команд нужен для того, чтобы перевести каждый машинный код в набор сигналов, приводящих в действие различные компоненты микропроцессора. Если упростить суть его действий, то можно сказать, что именно он согласует «софт» и «железо».

Рассмотрим работу дешифратора команд на примере инструкции ADD, выполняющей действие сложения:

  • В течение первого цикла тактовой частоты процессора происходит загрузка команды. На этом этапе дешифратору команд необходимо: активировать буфер сортировки для счетчика команд; активировать канал чтения (RD); активировать защелку буфера сортировки на пропуск входных данных в регистр команд
  • В течение второго цикла тактовой частоты процессора команда ADD декодируется. На этом этапе арифметико-логическое устройство выполняет сложение и передает значение в регистр C
  • В течение третьего цикла тактовой частоты процессора счетчик команд увеличивает свое значение на единицу (теоретически, это действие пересекается с происходившим во время второго цикла)

Каждая команда может быть представлена в виде набора последовательно выполняемых операций, которые в определенном порядке манипулируют компонентами микропроцессора. То есть программные инструкции ведут ко вполне физическим изменениям: например, изменению положения защелки. Некоторые инструкции могут потребовать на свое выполнение двух или трех тактовых циклов процессора. Другим может потребоваться даже пять или шесть циклов.

Здесь конец лирике и начало проекта

Материал, приведенный в данной статье, написан на основе реальной разработки, описанной в Л14. Упрощенная модель микропроцессора, описанная в данной статье, служит только примером для разработки или изучения. Но тем не менее, она может быть легко доработана для практического использования.

Методика разработки позволяет оценить трудоемкость, определить ресурс, необходимый для реализации микроконтроллера в FPGA. Весь процесс разработки будет состоять из следующих этапов:

  1. Разработка задания на проектирование.
  2. Разработка блок-схемы микропроцессора.
  3. Разработка полей кодов операций.
  4. Разработка кодов команд.
  5. Описание на AHDL блоков, входящих в микропроцессор.
  6. Описание микропроцессора на AHDL.
  7. Написание микропрограммы.
  8. Симуляция микропроцессора с микропрограммой.
  9. Выводы.

Как работает компьютерный процессор

Перед тем, как разобрать основные принципы работы CPU, желательно ознакомиться с его компонентами, ведь это не просто прямоугольная пластина, монтируемая в материнскую плату, это сложное устройство, образующееся из многих элементов. Более подробно с устройством ЦП вы можете ознакомиться в нашей статье, а сейчас давайте приступим к разбору главной темы статьи.

Подробнее: Устройство современного процессора компьютера

Выполняемые операции

Операция представляет собой одно или несколько действий, которые обрабатываются и выполняются компьютерными устройствами, в том числе и процессором. Сами операции делятся на несколько классов:

  1. Ввод и вывод. К компьютеру обязательно подключено несколько внешних устройств, например, клавиатура и мышь. Они напрямую связаны с процессором и для них выделена отдельная операция. Она выполняет передачу данных между CPU и периферийными девайсами, а также вызывает определенные действия с целью записи информации в память или ее вывода на внешнюю аппаратуру.
  2. Системные операции отвечают за остановку работы софта, организовывают обработку данных, ну и, кроме всего, отвечают за стабильную работу системы ПК.
  3. Операции записи и загрузки. Передача данных между процессором и памятью осуществляется с помощью посылочных операций. Быстродействие обеспечивается одновременной запись или загрузкой групп команд или данных.
  4. Арифметически-логические. Такой тип операций вычисляет значения функций, отвечает за обработку чисел, преобразование их в различные системы исчисления.
  5. Переходы. Благодаря переходам скорость работы системы значительно увеличивается, ведь они позволяют передать управление любой команде программы, самостоятельно определяя наиболее подходящие условия перехода.

Все операции должны работать одновременно, поскольку во время активности системы за раз запущено несколько программ. Это выполняется благодаря чередованию обработки данных процессором, что позволяет ставить приоритет операциям и выполнять их параллельно.

Выполнение команд

Обработка команды делится на две составные части – операционную и операндную. Операционная составляющая показывает всей системе то, над чем она должна работать в данный момент, а операндная делает то же самое, только отдельно с процессором. Выполнением команд занимаются ядра, а действия осуществляются последовательно. Сначала происходит выработка, потом дешифрование, само выполнение команды, запрос памяти и сохранение готового результата.

Благодаря применению кэш-памяти выполнение команд происходит быстрее, поскольку не нужно постоянно обращаться к ОЗУ, а данные хранятся на определенных уровнях. Каждый уровень кэш-памяти отличается объемом данных и скоростью выгрузки и записи, что влияет на быстродействие систем.

Взаимодействия с памятью

ПЗУ (Постоянное запоминающее устройство) может хранить в себе только неизменяемую информацию, а вот ОЗУ (Оперативная память) используется для хранения программного кода, промежуточных данных. С этими двумя видами памяти взаимодействует процессор, запрашивая и передавая информацию. Взаимодействие происходит с использованием подключенных внешних устройств, шин адресов, управления и различных контролеров. Схематически все процессы изображены на рисунке ниже.

Если разобраться о важности ОЗУ и ПЗУ, то без первой и вовсе можно было бы обойтись, если бы постоянное запоминающее устройство имело намного больше памяти, что пока реализовать практически невозможно. Без ПЗУ система работать не сможет, она даже не запустится, поскольку сначала происходит тестирование оборудования с помощью команд БИОСа

Работа процессора

Стандартные средства Windows позволяют отследить нагрузку на процессор, посмотреть все выполняемые задачи и процессы. Осуществляется это через «Диспетчер задач», который вызывается горячими клавишами Ctrl + Shift + Esc.

В разделе «Быстродействие» отображается хронология нагрузки на CPU, количество потоков и исполняемых процессов. Кроме этого показана невыгружаемая и выгружаемая память ядра. В окне «Мониторинг ресурсов» присутствует более подробная информация о каждом процессе, отображаются рабочие службы и связанные модули.

Сегодня мы доступно и подробно рассмотрели принцип работы современного компьютерного процессора

Разобрались с операциями и командами, важностью каждого элемента в составе ЦП. Надеемся, данная информация полезна для вас и вы узнали что-то новое

Опишите, что у вас не получилось.
Наши специалисты постараются ответить максимально быстро.

Устройство микропроцессора

Как устроен процессор компьютера? В любом микропроцессоре можно выделить 3 составляющих:

  1. Ядро процессора (именно здесь происходит разделение нулей и единиц);
  2. Кэш-память – небольшой накопитель информации прямо внутри процессора;
  3. Сопроцессор – особый мозговой центр любого процессора, в котором происходят самые сложные операции. Здесь же идёт работа с мультимедийными файлами.

Схема процессора компьютера в упрощенном варианте выглядит следующим образом:

Один из основных показателей микропроцессора – тактовая частота. Она показывает, сколько тактов «камень» совершает в секунду. Мощность процессора компьютера зависит от совокупности показателей, приведенных выше.

Следует отметить, что когда-то запусками ракет и работой спутников руководили микропроцессоры с тактовой частотой в тысячи раз меньшей, чем та, которой обладают «собратья» нынешние. А размер одного транзистора составляет 22нм, прослойка транзисторов – всего 1 нм. Для справки, 1 нм – толщина 5 атомов!

Вот теперь вы знаете, как устроен процессор компьютера и каких успехов добились учёные, работающие на фирмах по производству персональных компьютеров.

Как это все работает?

Логика работы любого процессора строится на том, что все данные компьютера хранятся в битах, специальных ячейках информации, представленных 0 или 1. Попробуем разобраться, что происходит, как из этих нулей и единиц на экран перед нами предстают красочные фильмы и захватывающие компьютерные игры?

Прежде всего, необходимо уяснить, что имея дело с электроникой, мы получаем любую информацию в виде напряжения. Выше определенного значения мы получаем единицу, ниже – ноль. К примеру, включенный в комнате свет – это единица, выключенный – ноль. Дальнейшая иерархия, благодаря которой получаются более сложные элементы – это байт, состоящий из восьми битов. Благодаря этим самым байтам речь может идти не только о включенном или выключенном свете в помещении, но и о его яркости, оттенке цвета и так далее.

Напряжение проходит через память и передает данные процессору, который использует, в первую очередь, собственную кэш-память как наиболее оперативную, однако, небольшую ячейку. Через специальный блок управления данные обрабатываются и распределяются по дальнейшему пути.

Процессор использует байты и целые последовательности из них, что, в свою очередь, называется программой. Именно программы, обрабатываемые процессором, заставляют компьютер выполнить то или иное действие: воспроизвести видео, запустить игру, включить музыку и так далее.

Как работает процессор

В предыдущем пункте было разобрано, что такое процессор и для чего он нужен. Самое время посмотреть на то, как это работает.

Деятельность ЦП можно представить последовательностью следующих событий:

  • Из ОЗУ, куда загрузилась определенная программа (допустим текстовый редактор), управляющий блок процессора извлекает необходимые сведения, а также набор команд, которые обязательно нужно выполнить. Все это отправляется в буферную память (кэш) ЦП;
  • Выходящая из кэш-памяти информация разделяется на два вида: инструкции и значения, которые отправляются в регистры (это такие ячейки памяти в процессоре). Первые идут в регистры команд, а вторые в регистры данных;
  • Информацию из регистров обрабатывает арифметико-логическое устройство (часть ЦПУ, которая выполняет арифметические и логические преобразования поступающих данных), которое из них считывает информацию, а за тем исполняет необходимые команды над получившимися в итоге числами;
  • Получившиеся результаты, разделяющиеся на законченные и незаконченные, идут в регистры, откуда первая группа отправляется в кэш-память ЦП;
  • Этот пункт начнем с того, что есть два основных уровня кэша: верхний и нижний. Последние полученные команды и данные, нужные для выполнения расчетов, поступают в кэш верхнего уровня, а неиспользуемые отправляются в кэш нижнего уровня. Этот процесс идёт следующим образом — вся информация идёт с третьего уровня кэша на второй, а потом попадает на первый, с не нужными на текущий момент данными и их отправкой на нижний уровень все обстоит наоборот;
  • По окончанию вычислительного цикла, конечный итог будет записан в оперативной памяти системы, для освобождения места кэш-памяти ЦП для новых операций. Но может произойти так, что буферная память будет переполнена, тогда неэксплуатируемые данные пойдут в оперативную память, или на нижний уровень кэша.

Поэтапные шаги вышеприведенных действий являются операционным потоком процессора и ответом на вопрос – как работает процессор.

Роль Intel в истории микропроцессорной индустрии

Речь идет о модели Intel 4004. Мощным он не был и умел выполнять только действия сложения и вычитания. Одновременно он мог обрабатывать всего четыре бита информации (то есть был 4-битным). Но для своего времени его появление стало значительным событием. Ведь весь процессор поместился в одном чипе. До появления Intel 4004, компьютеры базировались на целом наборе чипов или дискретных компонентов (транзисторов). Микропроцессор 4004 лег в основу одного из первых портативных калькуляторов. Первым микропроцессором для домашних компьютеров стал представленный в 1974 году Intel 8080. Вся вычислительная мощность 8-битного компьютера помещалась в одном чипе. Но по-настоящему большое значение имел анонс процессора Intel 8088. Он появился в 1979 году и с 1981 года стал использоваться в первых массовых персональных компьютерах IBM PC.

Далее процессоры начали развиваться и обрастать мощью. Каждый, кто хоть немного знаком с историей микропроцессорной индустрии, помнит, что на смену 8088 пришли 80286. Затем настал черед 80386, за которым следовали 80486. Потом были несколько поколений «Пентиумов»: Pentium, Pentium II, III и Pentium 4. Все это «интеловские» процессоры, основанные на базовой конструкции 8088. Они обладали обратной совместимостью. Это значит, что Pentium 4 мог обработать любой фрагмент кода для 8088, но делал это со скоростью, возросшей примерно в пять тысяч раз. С тех пор прошло не так много лет, но успели смениться еще несколько поколений микропроцессоров.

С 2004 года Intel начала предлагать многоядерные процессоры. Число используемых в них транзисторов возросло на миллионы. Но даже сейчас процессор подчиняется тем общим правилам, которые были созданы для ранних чипов. В таблице отражена история микропроцессоров Intel до 2004 года (включительно). Мы сделаем некоторые пояснения к тому, что означают отраженные в ней показатели:

  • Name (Название). Модель процессора
  • Date (Дата). Год, в который процессор был впервые представлен. Многие процессоры представляли многократно, каждый раз, когда повышалась их тактовая частота. Таким образом, очередная модификация чипа могла быть повторно анонсирована даже через несколько лет после появления на рынке первой его версии
  • Transistors (Количество транзисторов). Количество транзисторов в чипе. Вы можете видеть, что этот показатель неуклонно увеличивался
  • Microns (Ширина в микронах). Один микрон равен одной миллионной доле метра. Величина этого показателя определяется толщиной самого тонкого провода в чипе. Для сравнения, толщина человеческого волоса составляет 100 микрон
  • Clock speed (Тактовая частота). Максимальная скорость работы процессора
  • Data Width. «Битность» арифметико-логического устройства процессора (АЛУ, ALU). 8-битное АЛУ может слагать, вычитать, умножать и выполнять иные действия над двумя 8-битными числами. 32-битное АЛУ может работать с 32-битными числами. Чтобы сложить два 32-битных числа, восьмибитному АЛУ необходимо выполнить четыре инструкции. 32-битное АЛУ справится с этой задачей за одну инструкцию. Во многих (но не во всех) случаях ширина внешней шины данных совпадает с «битностью» АЛУ. Процессор 8088 обладал 16-битным АЛУ, но 8-битной шиной. Для поздних «Пентиумов» была характерна ситуация, когда шина была уже 64-битной, а АЛУ по-прежнему оставалось 32-битным
  • MIPS (Миллионов инструкций в секунду). Позволяет приблизительно оценить производительность процессора. Современные микропроцессоры выполняют настолько много разных задач, что этот показатель потерял свое первоначальное значение и может использоваться, в основном, для сравнения вычислительной мощности нескольких процессоров (как в данной таблице)

Существует непосредственная связь между тактовой частотой, а также количеством транзисторов и числом операций, выполняемых процессором за одну секунду. Например, тактовая частота процессора 8088 достигала 5 МГЦ, а производительность: всего 0,33 миллиона операций в секунду. То есть на выполнение одной инструкции требовалось порядка 15 тактов процессора. В 2004 году процессоры уже могли выполнять по две инструкции за один такт. Это улучшение было обеспечено увеличением количества процессоров в чипе.

Чип также называют интегральной микросхемой (или просто микросхемой). Чаще всего это маленькая и тонкая кремниевая пластинка, в которую «впечатаны» транзисторы. Чип, сторона которого достигает двух с половиной сантиметров, может содержать десятки миллионов транзисторов. Простейшие процессоры могут быть квадратиками со стороной всего в несколько миллиметров. И этого размера достаточно для нескольких тысяч транзисторов.

Компоненты частоты

Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора

Правда, его задействовать нужно осторожно

Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.

Процессор

Процессор — это «мозг» компьютера. Процессором называется устройство, способное обрабатывать программный код и определяющее основные функции компьютера по обработке информации.

Процессор выполняет основную работу в компьютере. Процессоры конструктивно могут выполняться как в виде одной большой интегральной микросхемы — чипа, так и в виде нескольких микросхем, блоков электронных плат н устройств.

В настоящее время микропроцессоры и процессоры вмещают в себя миллионы транзисторов и других элементов электронной логики и представляют собой сложнейшие высокотехнологичные электронные устройства.

Персональный компьютер содержит в своем составе довольно много различных процессоров. Каждое устройство, будь то видеокарта, системная шина или еще что-либо, обслуживается своим собственным процессором или процессорами

Однако архитектуру и конструктивное исполнение персонального компьютера определяет процессор или процессоры, контролирующие и обслуживающие системную шину и оперативную намять, и, что более важно, выполняющие объектный код программ. Такие процессоры принято называть центральными или главными процессорами (Central Point

Unit — CPU). На основе архитектуры центральных процессоров строится архитектура материнских плат и проектируется архитектура и конструкция компьютера.

Компьютеры с процессорами, поддерживающими систему команд Intel х86 (фирм Intel, AMD, Cyrix, Transmeta), на которых может исполнять операционная система Microsoft Windows, называются Wintel-компьютерами (от Windows и Intel).

Тактовая частота процессора определяет минимальный квант времени, за который процессор выполняет некоторую условную элементарную операцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор.

Каждый микропроцессор имеет определенное число элементов памяти, называемых регистрами, арифметико-логическое устройство (АЛУ) и устройство управления.

Регистры используются для временного хранения выполняемой команды, адресов памяти, обрабатываемых данных и другой внутренней информации микропроцессора. В АЛУ производится арифметическая н логическая обработка данных.

Устройство управления вырабатывает необходимые управляющие сигналы для внутренней работы микропроцессора и связи его с другой аппаратурой через внешние шины микропроцессора.

Цикл выполнения команд — Декодирование

Когда процессор получает команду, ему нужно точно определить тип этой команды. Данный процесс называется декодированием. Каждая команда обладает особым набором битов, опкодом, который дает возможность процессору распознать ее тип. Примерно по тому же принципу работает распознавание компьютером различных расширений файлов. К примеру, .jpg и .png — форматы изображений, но каждый из них обрабатывает данные по-разному, поэтому компьютеру и нужно точно распознавать их тип.

Стоит отметить, что сложность декодирования может зависеть от того, насколько продвинутой является архитектура набора команд процессора. У архитектуры RISC-V, к примеру, несколько десятков команд, а у x86 — несколько тысяч. У типичного процессора Intel x86 процесс декодирования является одним из сложнейших и занимает огромное количество памяти. Чаще всего процессоры декодируют команды, связанные с памятью, арифметическими вычислениями и переходом. 

Разгон процессора

ЦП — самая важная часть компьютера. Разгон еще больше увеличивает мощность ПК. Как уже упоминалось, если ваш компьютер ограничен мощностью процессора, страдает вся производительность. Что делать для разгона?

  • Загрузите компьютер вместе с BIOS.
  • Попав в меню, вы можете выбрать типы разгона: автоматический или ручной. К тому же часто есть заранее подготовленные параметры разгона, но они не разгоняют процессор более чем на 10%. Поэтому рекомендуется выбирать ручной режим.
  • Во-первых, определите, не знаете ли вы, какой у вас процессор.
  • Каждая материнская плата имеет свое устройство BIOS, поэтому поищите в Интернете, как получить доступ к меню разгона процессора.
  • Если компьютер не загружается или во время работы появляется синий экран смерти, похоже, вы разогнали разгон.
  • Запустите компьютер и посмотрите, как он работает.
  • Попробуйте увеличить множитель процессора на 10-15% (допустим, 220, а ставка 330).
  • Попробуйте найти информацию о разгоне вашей конкретной модели процессора у пользователей на Интернет-форумах. Будет указана максимально возможная частота, на которую другие пользователи могли довести процессор.

Память микропроцессора

Знакомство с подробностями, касающимися компьютерной памяти и ее иерархии помогут лучше понять содержание этого раздела.

Выше мы писали о шинах (адресной и данных), а также о каналах чтения (RD) и записи (WR). Эти шины и каналы соединены с памятью: оперативной (ОЗУ, RAM) и постоянным запоминающим устройством (ПЗУ, ROM). В нашем примере рассматривается микропроцессор, ширина каждой из шин которого составляет 8 бит. Это значит, что он способен выполнять адресацию 256 байт (два в восьмой степени). В один момент времени он может считывать из памяти или записывать в нее 8 бит данных. Предположим, что этот простой микропроцессор располагает 128 байтами ПЗУ (начиная с адреса 0) или 128 байтами оперативной памяти (начиная с адреса 128).

Модуль постоянной памяти содержит определенный предварительно установленный постоянный набор байт. Адресная шина запрашивает у ПЗУ определенный байт, который следует передать шине данных. Когда канал чтения (RD) меняет свое состояние, модуль ПЗУ предоставляет запрошенный байт шине данных. То есть в данном случае возможно только чтение данных.

Из оперативной памяти процессор может не только считывать информацию, он способен также записывать в нее данные. В зависимости от того, чтение или запись осуществляется, сигнал поступает либо через канал чтения (RD), либо через канал записи (WR). К сожалению, оперативная память энергозависима. При отключении питания она теряет все размещенные в ней данные. По этой причине компьютеру необходимо энергонезависимое постоянное запоминающее устройство.

Более того, теоретически компьютер может обойтись и вовсе без оперативной памяти. Многие микроконтроллеры позволяют размещать необходимые байты данных непосредственно в чип процессора. Но без ПЗУ обойтись невозможно. В персональных компьютерах ПЗУ называется базовой системой ввода и вывода (БСВВ, BIOS, Basic Input/Output System). Свою работу при запуске микропроцессор начинает с выполнения команд, найденных им в BIOS.

Команды BIOS выполняют тестирование аппаратного обеспечения компьютера, а затем они обращаются к жесткому диску и выбирают загрузочный сектор. Этот загрузочный сектор является отдельной небольшой программой, которую BIOS сначала считывает с диска, а затем размещает в оперативной памяти. После этого микропроцессор начинает выполнять команды расположенного в ОЗУ загрузочного сектора. Программа загрузочного сектора сообщает микропроцессору о том, какие данные (предназначенные для последующего выполнения процессором) следует дополнительно переместить с жесткого диска в оперативную память. Именно так происходит процесс загрузки процессором операционной системы.